基于自适应模型匹配逆优化的自来水驱动人工肌肉模型预测位移控制整定及其贡献分析

Satoshi Tsuruhara, Ryo Inada, K. Ito
{"title":"基于自适应模型匹配逆优化的自来水驱动人工肌肉模型预测位移控制整定及其贡献分析","authors":"Satoshi Tsuruhara, Ryo Inada, K. Ito","doi":"10.20965/ijat.2022.p0436","DOIUrl":null,"url":null,"abstract":"The tap-water-driven McKibben artificial muscle has many advantages and is expected to be applied in mechanical systems that require a high degree of cleanliness. However, the muscle has strong asymmetric hysteresis characteristics that depend on the load, and these problems prevent its widespread use. In this study, a novel control method, model predictive control with a servomechanism based on inverse optimization with adaptive model matching, was developed. This control method was applied to the muscle by using a high-precision mathematical model employing an asymmetric Bouc-Wen model. The experimental results show that the proposed approach achieved a high tracking performance for a given reference frequency, with a mean absolute error of 0.13 mm in the steady-state response and with easier controller tuning. Furthermore, the contributions of the controller elements of the proposed method were evaluated. The results show that the contribution of the adaptive system was higher than that of the servo system. Furthermore, the effectiveness of adaptive model matching was verified.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"20 1","pages":"436-447"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model Predictive Displacement Control Tuning for Tap-Water-Driven Artificial Muscle by Inverse Optimization with Adaptive Model Matching and its Contribution Analyses\",\"authors\":\"Satoshi Tsuruhara, Ryo Inada, K. Ito\",\"doi\":\"10.20965/ijat.2022.p0436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tap-water-driven McKibben artificial muscle has many advantages and is expected to be applied in mechanical systems that require a high degree of cleanliness. However, the muscle has strong asymmetric hysteresis characteristics that depend on the load, and these problems prevent its widespread use. In this study, a novel control method, model predictive control with a servomechanism based on inverse optimization with adaptive model matching, was developed. This control method was applied to the muscle by using a high-precision mathematical model employing an asymmetric Bouc-Wen model. The experimental results show that the proposed approach achieved a high tracking performance for a given reference frequency, with a mean absolute error of 0.13 mm in the steady-state response and with easier controller tuning. Furthermore, the contributions of the controller elements of the proposed method were evaluated. The results show that the contribution of the adaptive system was higher than that of the servo system. Furthermore, the effectiveness of adaptive model matching was verified.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"20 1\",\"pages\":\"436-447\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2022.p0436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自来水驱动的McKibben人造肌肉有许多优点,有望应用于需要高度清洁度的机械系统。然而,肌肉有很强的不对称滞回特性,这取决于负载,这些问题阻碍了它的广泛应用。本文提出了一种基于自适应模型匹配逆优化的伺服机构模型预测控制方法。该控制方法通过采用不对称Bouc-Wen模型的高精度数学模型应用于肌肉。实验结果表明,该方法在给定的参考频率下具有良好的跟踪性能,稳态响应的平均绝对误差为0.13 mm,控制器易于整定。此外,还对所提方法的控制器元素的贡献进行了评估。结果表明,自适应系统的贡献大于伺服系统的贡献。进一步验证了自适应模型匹配的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Predictive Displacement Control Tuning for Tap-Water-Driven Artificial Muscle by Inverse Optimization with Adaptive Model Matching and its Contribution Analyses
The tap-water-driven McKibben artificial muscle has many advantages and is expected to be applied in mechanical systems that require a high degree of cleanliness. However, the muscle has strong asymmetric hysteresis characteristics that depend on the load, and these problems prevent its widespread use. In this study, a novel control method, model predictive control with a servomechanism based on inverse optimization with adaptive model matching, was developed. This control method was applied to the muscle by using a high-precision mathematical model employing an asymmetric Bouc-Wen model. The experimental results show that the proposed approach achieved a high tracking performance for a given reference frequency, with a mean absolute error of 0.13 mm in the steady-state response and with easier controller tuning. Furthermore, the contributions of the controller elements of the proposed method were evaluated. The results show that the contribution of the adaptive system was higher than that of the servo system. Furthermore, the effectiveness of adaptive model matching was verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1