Danilo Swann Matassa, Diana Arzeni, M. Landriscina, F. Esposito
{"title":"肿瘤细胞内质网应激保护:热休克蛋白TRAP1的多方面作用","authors":"Danilo Swann Matassa, Diana Arzeni, M. Landriscina, F. Esposito","doi":"10.2478/ersc-2014-0003","DOIUrl":null,"url":null,"abstract":"Abstract TRAP1 is an HSP90 chaperone, upregulated in human cancers and involved in organelles’ homeostasis and tumor cell metabolism. Indeed, TRAP1 is a key regulator of adaptive responses used by highly proliferative tumors to face the metabolic stress induced by increased demand of protein synthesis and hostile environments. Besides well-characterized roles in prevention of mitochondrial permeability transition pore opening and in regulating mitochondrial respiration, TRAP1 is involved in novel regulatory mechanisms: i) the attenuation of global protein synthesis, ii) the co-translational regulation of protein synthesis and ubiquitination of specific client proteins, and iii) the protection from Endoplasmic Reticulum stress. This provides a crucial role to TRAP1 in maintaining cellular homeostasis through protein quality control, by avoiding the accumulation of damaged or misfolded proteins and, likely, facilitating the synthesis of selective cancer-related proteins. Herein, we summarize how these regulatory mechanisms are part of an integrated network, which enables cancer cells to modulate their metabolism and to face, at the same time, oxidative and metabolic stress, oxygen and nutrient deprivation, increased demand of energy production and macromolecule biosynthesis. The possibility to undertake a new strategy to disrupt such networks of integrated control in cancer cells holds great promise for treatment of human malignancies.","PeriodicalId":29730,"journal":{"name":"Cell Pathology","volume":"80 1","pages":"40 - 48"},"PeriodicalIF":0.7000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ER stress protection in cancer cells: the multifaceted role of the heat shock protein TRAP1\",\"authors\":\"Danilo Swann Matassa, Diana Arzeni, M. Landriscina, F. Esposito\",\"doi\":\"10.2478/ersc-2014-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract TRAP1 is an HSP90 chaperone, upregulated in human cancers and involved in organelles’ homeostasis and tumor cell metabolism. Indeed, TRAP1 is a key regulator of adaptive responses used by highly proliferative tumors to face the metabolic stress induced by increased demand of protein synthesis and hostile environments. Besides well-characterized roles in prevention of mitochondrial permeability transition pore opening and in regulating mitochondrial respiration, TRAP1 is involved in novel regulatory mechanisms: i) the attenuation of global protein synthesis, ii) the co-translational regulation of protein synthesis and ubiquitination of specific client proteins, and iii) the protection from Endoplasmic Reticulum stress. This provides a crucial role to TRAP1 in maintaining cellular homeostasis through protein quality control, by avoiding the accumulation of damaged or misfolded proteins and, likely, facilitating the synthesis of selective cancer-related proteins. Herein, we summarize how these regulatory mechanisms are part of an integrated network, which enables cancer cells to modulate their metabolism and to face, at the same time, oxidative and metabolic stress, oxygen and nutrient deprivation, increased demand of energy production and macromolecule biosynthesis. The possibility to undertake a new strategy to disrupt such networks of integrated control in cancer cells holds great promise for treatment of human malignancies.\",\"PeriodicalId\":29730,\"journal\":{\"name\":\"Cell Pathology\",\"volume\":\"80 1\",\"pages\":\"40 - 48\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ersc-2014-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ersc-2014-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ER stress protection in cancer cells: the multifaceted role of the heat shock protein TRAP1
Abstract TRAP1 is an HSP90 chaperone, upregulated in human cancers and involved in organelles’ homeostasis and tumor cell metabolism. Indeed, TRAP1 is a key regulator of adaptive responses used by highly proliferative tumors to face the metabolic stress induced by increased demand of protein synthesis and hostile environments. Besides well-characterized roles in prevention of mitochondrial permeability transition pore opening and in regulating mitochondrial respiration, TRAP1 is involved in novel regulatory mechanisms: i) the attenuation of global protein synthesis, ii) the co-translational regulation of protein synthesis and ubiquitination of specific client proteins, and iii) the protection from Endoplasmic Reticulum stress. This provides a crucial role to TRAP1 in maintaining cellular homeostasis through protein quality control, by avoiding the accumulation of damaged or misfolded proteins and, likely, facilitating the synthesis of selective cancer-related proteins. Herein, we summarize how these regulatory mechanisms are part of an integrated network, which enables cancer cells to modulate their metabolism and to face, at the same time, oxidative and metabolic stress, oxygen and nutrient deprivation, increased demand of energy production and macromolecule biosynthesis. The possibility to undertake a new strategy to disrupt such networks of integrated control in cancer cells holds great promise for treatment of human malignancies.