{"title":"基于压缩感知的时空耦合多移动感知","authors":"Tianwei Li, Q. Zou","doi":"10.1115/dscc2019-9218","DOIUrl":null,"url":null,"abstract":"\n In this paper, the problem of using a limited number of mobile sensors to sense/measure a time-varying distribution of a field over a multi dimensional space is considered. As the number of sensors, in general, is not adequate for capturing the dynamic distribution with the needed spatial resolution, the sensors are required to be transited between the sampled locations, resulting in intermittent measurement at each sampled location. Therefore, it becomes challenging to use the measured data to recover/restore not only the dynamic process at each sampled/measured location, but also the dynamic distribution over the entire measured space, with high temporal and spatial resolutions. Such a multi-mobile sensing problem, however, cannot be addressed by using existing methods directly. In this work, we propose to tackle this problem through the compressed sensing framework. The randomness requirement of the compressed sensing, however, results in the temporal-spatial coupling, and the constraints in selecting the sampled locations due to the limit of the sensor speed. We propose a spatial-temporal pairing method to avoid the temporal-spatial coupling, and a checking-and-removal process to remove the sensor speed constraint. Simulation results of a video recovery example is presented and discussed to illustrate the proposed method.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Mobile Sensing With Temporal-Spatial Coupling via Compressed Sensing\",\"authors\":\"Tianwei Li, Q. Zou\",\"doi\":\"10.1115/dscc2019-9218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, the problem of using a limited number of mobile sensors to sense/measure a time-varying distribution of a field over a multi dimensional space is considered. As the number of sensors, in general, is not adequate for capturing the dynamic distribution with the needed spatial resolution, the sensors are required to be transited between the sampled locations, resulting in intermittent measurement at each sampled location. Therefore, it becomes challenging to use the measured data to recover/restore not only the dynamic process at each sampled/measured location, but also the dynamic distribution over the entire measured space, with high temporal and spatial resolutions. Such a multi-mobile sensing problem, however, cannot be addressed by using existing methods directly. In this work, we propose to tackle this problem through the compressed sensing framework. The randomness requirement of the compressed sensing, however, results in the temporal-spatial coupling, and the constraints in selecting the sampled locations due to the limit of the sensor speed. We propose a spatial-temporal pairing method to avoid the temporal-spatial coupling, and a checking-and-removal process to remove the sensor speed constraint. Simulation results of a video recovery example is presented and discussed to illustrate the proposed method.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multi-Mobile Sensing With Temporal-Spatial Coupling via Compressed Sensing
In this paper, the problem of using a limited number of mobile sensors to sense/measure a time-varying distribution of a field over a multi dimensional space is considered. As the number of sensors, in general, is not adequate for capturing the dynamic distribution with the needed spatial resolution, the sensors are required to be transited between the sampled locations, resulting in intermittent measurement at each sampled location. Therefore, it becomes challenging to use the measured data to recover/restore not only the dynamic process at each sampled/measured location, but also the dynamic distribution over the entire measured space, with high temporal and spatial resolutions. Such a multi-mobile sensing problem, however, cannot be addressed by using existing methods directly. In this work, we propose to tackle this problem through the compressed sensing framework. The randomness requirement of the compressed sensing, however, results in the temporal-spatial coupling, and the constraints in selecting the sampled locations due to the limit of the sensor speed. We propose a spatial-temporal pairing method to avoid the temporal-spatial coupling, and a checking-and-removal process to remove the sensor speed constraint. Simulation results of a video recovery example is presented and discussed to illustrate the proposed method.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.