高度可扩展,共享内存,基于蒙特卡洛树搜索的Blokus Duo求解器在FPGA上

Ehsan Qasemi, Amir Samadi, Mohammad H. Shadmehr, Bardia Azizian, Sajjad Mozaffari, Amir Shirian, B. Alizadeh
{"title":"高度可扩展,共享内存,基于蒙特卡洛树搜索的Blokus Duo求解器在FPGA上","authors":"Ehsan Qasemi, Amir Samadi, Mohammad H. Shadmehr, Bardia Azizian, Sajjad Mozaffari, Amir Shirian, B. Alizadeh","doi":"10.1109/FPT.2014.7082823","DOIUrl":null,"url":null,"abstract":"In this paper we present our hardware architecture on a highly scalable, shared-memory, Monte-Carlo Tree Search (MCTS) based Blokus-Duo solver. In the proposed architecture each MCTS solver module contains a centralized MCTS controller which can also be implemented using soft-cores with a true dual-port access to a shared memory called main memory, and multitude number of MCTS engines each containing several simulation cores. Consequently, this highly flexible architecture guaranties the optimized performance of the solver regardless of the actual FPGA platform used. Our design has been inspired from parallel MCTS algorithms and is potentially capable of obtaining maximum possible parallelism from MCTS algorithm. On the other hand, in our design we combine MCTS with pruning heuristics to increase both the memory and LE utilizations. The results show that our architecture can run up to 50MHz on DE2-115 platform, where each Simulation core requires 11K LEs and MCTS controller requires 10KLEs.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"18 1","pages":"370-373"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Highly scalable, shared-memory, Monte-Carlo tree search based Blokus Duo Solver on FPGA\",\"authors\":\"Ehsan Qasemi, Amir Samadi, Mohammad H. Shadmehr, Bardia Azizian, Sajjad Mozaffari, Amir Shirian, B. Alizadeh\",\"doi\":\"10.1109/FPT.2014.7082823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present our hardware architecture on a highly scalable, shared-memory, Monte-Carlo Tree Search (MCTS) based Blokus-Duo solver. In the proposed architecture each MCTS solver module contains a centralized MCTS controller which can also be implemented using soft-cores with a true dual-port access to a shared memory called main memory, and multitude number of MCTS engines each containing several simulation cores. Consequently, this highly flexible architecture guaranties the optimized performance of the solver regardless of the actual FPGA platform used. Our design has been inspired from parallel MCTS algorithms and is potentially capable of obtaining maximum possible parallelism from MCTS algorithm. On the other hand, in our design we combine MCTS with pruning heuristics to increase both the memory and LE utilizations. The results show that our architecture can run up to 50MHz on DE2-115 platform, where each Simulation core requires 11K LEs and MCTS controller requires 10KLEs.\",\"PeriodicalId\":6877,\"journal\":{\"name\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"18 1\",\"pages\":\"370-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2014.7082823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一个高度可扩展的、共享内存的、基于蒙特卡罗树搜索(MCTS)的Blokus-Duo求解器的硬件架构。在提出的架构中,每个MCTS求解器模块包含一个集中的MCTS控制器,该控制器也可以使用具有真正双端口访问称为主存的共享内存的软核来实现,以及多个MCTS引擎,每个引擎包含多个仿真核心。因此,无论实际使用的FPGA平台如何,这种高度灵活的架构都保证了求解器的最佳性能。我们的设计受到并行MCTS算法的启发,并有可能从MCTS算法中获得最大可能的并行性。另一方面,在我们的设计中,我们将MCTS与剪枝启发式结合起来,以增加内存和LE利用率。结果表明,我们的架构可以在DE2-115平台上运行高达50MHz,其中每个仿真核心需要11K的LEs, MCTS控制器需要10k的LEs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly scalable, shared-memory, Monte-Carlo tree search based Blokus Duo Solver on FPGA
In this paper we present our hardware architecture on a highly scalable, shared-memory, Monte-Carlo Tree Search (MCTS) based Blokus-Duo solver. In the proposed architecture each MCTS solver module contains a centralized MCTS controller which can also be implemented using soft-cores with a true dual-port access to a shared memory called main memory, and multitude number of MCTS engines each containing several simulation cores. Consequently, this highly flexible architecture guaranties the optimized performance of the solver regardless of the actual FPGA platform used. Our design has been inspired from parallel MCTS algorithms and is potentially capable of obtaining maximum possible parallelism from MCTS algorithm. On the other hand, in our design we combine MCTS with pruning heuristics to increase both the memory and LE utilizations. The results show that our architecture can run up to 50MHz on DE2-115 platform, where each Simulation core requires 11K LEs and MCTS controller requires 10KLEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the General Chair and Program Co-Chairs Accelerator-in-Switch: A Novel Cooperation Framework for FPGAs and GPUs FPGA Accelerated HPC and Data Analytics Novel Neural Network Applications on New Python Enabled Platforms High-level synthesis - the right side of history
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1