自动驾驶领域不一致目标检测的双课程教师

L. Yu, Yifan Zhang, Lanqing Hong, Fei Chen, Zhenguo Li
{"title":"自动驾驶领域不一致目标检测的双课程教师","authors":"L. Yu, Yifan Zhang, Lanqing Hong, Fei Chen, Zhenguo Li","doi":"10.48550/arXiv.2210.08748","DOIUrl":null,"url":null,"abstract":"Object detection for autonomous vehicles has received increasing attention in recent years, where labeled data are often expensive while unlabeled data can be collected readily, calling for research on semi-supervised learning for this area. Existing semi-supervised object detection (SSOD) methods usually assume that the labeled and unlabeled data come from the same data distribution. In autonomous driving, however, data are usually collected from different scenarios, such as different weather conditions or different times in a day. Motivated by this, we study a novel but challenging domain inconsistent SSOD problem. It involves two kinds of distribution shifts among different domains, including (1) data distribution discrepancy, and (2) class distribution shifts, making existing SSOD methods suffer from inaccurate pseudo-labels and hurting model performance. To address this problem, we propose a novel method, namely Dual-Curriculum Teacher (DucTeacher). Specifically, DucTeacher consists of two curriculums, i.e., (1) domain evolving curriculum seeks to learn from the data progressively to handle data distribution discrepancy by estimating the similarity between domains, and (2) distribution matching curriculum seeks to estimate the class distribution for each unlabeled domain to handle class distribution shifts. In this way, DucTeacher can calibrate biased pseudo-labels and handle the domain-inconsistent SSOD problem effectively. DucTeacher shows its advantages on SODA10M, the largest public semi-supervised autonomous driving dataset, and COCO, a widely used SSOD benchmark. Experiments show that DucTeacher achieves new state-of-the-art performance on SODA10M with 2.2 mAP improvement and on COCO with 0.8 mAP improvement.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"34 10 1","pages":"872"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dual-Curriculum Teacher for Domain-Inconsistent Object Detection in Autonomous Driving\",\"authors\":\"L. Yu, Yifan Zhang, Lanqing Hong, Fei Chen, Zhenguo Li\",\"doi\":\"10.48550/arXiv.2210.08748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection for autonomous vehicles has received increasing attention in recent years, where labeled data are often expensive while unlabeled data can be collected readily, calling for research on semi-supervised learning for this area. Existing semi-supervised object detection (SSOD) methods usually assume that the labeled and unlabeled data come from the same data distribution. In autonomous driving, however, data are usually collected from different scenarios, such as different weather conditions or different times in a day. Motivated by this, we study a novel but challenging domain inconsistent SSOD problem. It involves two kinds of distribution shifts among different domains, including (1) data distribution discrepancy, and (2) class distribution shifts, making existing SSOD methods suffer from inaccurate pseudo-labels and hurting model performance. To address this problem, we propose a novel method, namely Dual-Curriculum Teacher (DucTeacher). Specifically, DucTeacher consists of two curriculums, i.e., (1) domain evolving curriculum seeks to learn from the data progressively to handle data distribution discrepancy by estimating the similarity between domains, and (2) distribution matching curriculum seeks to estimate the class distribution for each unlabeled domain to handle class distribution shifts. In this way, DucTeacher can calibrate biased pseudo-labels and handle the domain-inconsistent SSOD problem effectively. DucTeacher shows its advantages on SODA10M, the largest public semi-supervised autonomous driving dataset, and COCO, a widely used SSOD benchmark. Experiments show that DucTeacher achieves new state-of-the-art performance on SODA10M with 2.2 mAP improvement and on COCO with 0.8 mAP improvement.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"34 10 1\",\"pages\":\"872\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.08748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.08748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,自动驾驶汽车的目标检测受到越来越多的关注,其中标记数据通常昂贵,而未标记数据可以很容易地收集,这需要研究半监督学习。现有的半监督目标检测(SSOD)方法通常假设标记数据和未标记数据来自同一数据分布。然而,在自动驾驶中,数据通常是从不同的场景中收集的,比如不同的天气条件或一天中的不同时间。基于此,我们研究了一个新颖但具有挑战性的领域不一致SSOD问题。它涉及到两种不同领域之间的分布移位,包括(1)数据分布差异和(2)类分布移位,使得现有SSOD方法存在伪标签不准确的问题,影响模型性能。为了解决这一问题,我们提出了一种新的方法,即双课程教师(DucTeacher)。具体来说,DucTeacher由两个课程组成,即(1)领域演进课程寻求从数据中逐步学习,通过估计领域之间的相似性来处理数据分布差异;(2)分布匹配课程寻求估计每个未标记领域的班级分布,以处理班级分布变化。这样,DucTeacher就可以对有偏差的伪标签进行校正,有效地处理域不一致的SSOD问题。DucTeacher在最大的公共半监督自动驾驶数据集SODA10M和广泛使用的SSOD基准COCO上展示了其优势。实验表明,DucTeacher在SODA10M上实现了2.2 mAP改进,在COCO上实现了0.8 mAP改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-Curriculum Teacher for Domain-Inconsistent Object Detection in Autonomous Driving
Object detection for autonomous vehicles has received increasing attention in recent years, where labeled data are often expensive while unlabeled data can be collected readily, calling for research on semi-supervised learning for this area. Existing semi-supervised object detection (SSOD) methods usually assume that the labeled and unlabeled data come from the same data distribution. In autonomous driving, however, data are usually collected from different scenarios, such as different weather conditions or different times in a day. Motivated by this, we study a novel but challenging domain inconsistent SSOD problem. It involves two kinds of distribution shifts among different domains, including (1) data distribution discrepancy, and (2) class distribution shifts, making existing SSOD methods suffer from inaccurate pseudo-labels and hurting model performance. To address this problem, we propose a novel method, namely Dual-Curriculum Teacher (DucTeacher). Specifically, DucTeacher consists of two curriculums, i.e., (1) domain evolving curriculum seeks to learn from the data progressively to handle data distribution discrepancy by estimating the similarity between domains, and (2) distribution matching curriculum seeks to estimate the class distribution for each unlabeled domain to handle class distribution shifts. In this way, DucTeacher can calibrate biased pseudo-labels and handle the domain-inconsistent SSOD problem effectively. DucTeacher shows its advantages on SODA10M, the largest public semi-supervised autonomous driving dataset, and COCO, a widely used SSOD benchmark. Experiments show that DucTeacher achieves new state-of-the-art performance on SODA10M with 2.2 mAP improvement and on COCO with 0.8 mAP improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Anatomically Consistent Embedding for Chest Radiography. Single Pixel Spectral Color Constancy DiffSketching: Sketch Control Image Synthesis with Diffusion Models Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation Mitigating Bias in Visual Transformers via Targeted Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1