{"title":"环境修复中可见光活性光催化剂的研究进展","authors":"K. Garadkar","doi":"10.13005/msri/190301","DOIUrl":null,"url":null,"abstract":", metal-free organic polymer and stable allotrope of carbon that is mostly employed for the degradation of dyes. It absorbs visible light due to its low band gap (2.7 eV) and π-π, 2D layered electronic structure. 4 The coupling of g-C3N4 and ZnO forms a novel scaffold nanocomposite which is a sensible way to improve light absorptivity, better surface area and charge carrier separation. The studies show that the modified ZnO NPs by Ag doping coupled with g-C 3 N 4 (Ag-ZnO/gC 3 N 4 NCs) produce a composite that shows improved properties of the photocatalyst. Antibacterial materials are frequently used because they can protect human beings from many diseases that are initiated due to bacterial exposure or contact. The synthesized NCs produced considerable zones of inhibition which point towardtheir good antibacterial activity. The reactive oxygen species damage the cellular membrane, leading to cell death.The ZnO NPs and their nanocomposites of Ag and g-C 3 N 4 are synthesized by a simple cost-effective co-precipitation method. This method provides a high yield with good purity of material and beneficial than other methods because the reagents are mixed at the molecular level so as to achieve the best stoichiometry and morphology with the desired size of thematerial. 5 The capping agent SDS is an anionic surfactant, it affects the morphology and aggregation ofmaterial which enhances the photocatalytic activity. The capping agent couldadsorb on nanoparticle surfaces and control the growth rate of crystallographic planes to limit the size and shape of nanoparticles. Boosting these activities of the ZnO NPs is the foremost goal of research. The research outcome will be helpful to different environmental remediation.The photocatalytic experiments showedthat the Ag-ZnO NPs (1.0 mol%) possessed excellent photocatalytic activity which exhibited a 26% increment in photodegradation of Methyl Orange (MO) compared to pristine ZnO under UV−Vis. the light within 90 min. These resultssuggest that Ag incorporated into ZnO will help to increase the rate offormation of O2•− and HO• reactive radicals,and","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Visible Active Photocatalyst for the Environmental Remediation\",\"authors\":\"K. Garadkar\",\"doi\":\"10.13005/msri/190301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\", metal-free organic polymer and stable allotrope of carbon that is mostly employed for the degradation of dyes. It absorbs visible light due to its low band gap (2.7 eV) and π-π, 2D layered electronic structure. 4 The coupling of g-C3N4 and ZnO forms a novel scaffold nanocomposite which is a sensible way to improve light absorptivity, better surface area and charge carrier separation. The studies show that the modified ZnO NPs by Ag doping coupled with g-C 3 N 4 (Ag-ZnO/gC 3 N 4 NCs) produce a composite that shows improved properties of the photocatalyst. Antibacterial materials are frequently used because they can protect human beings from many diseases that are initiated due to bacterial exposure or contact. The synthesized NCs produced considerable zones of inhibition which point towardtheir good antibacterial activity. The reactive oxygen species damage the cellular membrane, leading to cell death.The ZnO NPs and their nanocomposites of Ag and g-C 3 N 4 are synthesized by a simple cost-effective co-precipitation method. This method provides a high yield with good purity of material and beneficial than other methods because the reagents are mixed at the molecular level so as to achieve the best stoichiometry and morphology with the desired size of thematerial. 5 The capping agent SDS is an anionic surfactant, it affects the morphology and aggregation ofmaterial which enhances the photocatalytic activity. The capping agent couldadsorb on nanoparticle surfaces and control the growth rate of crystallographic planes to limit the size and shape of nanoparticles. Boosting these activities of the ZnO NPs is the foremost goal of research. The research outcome will be helpful to different environmental remediation.The photocatalytic experiments showedthat the Ag-ZnO NPs (1.0 mol%) possessed excellent photocatalytic activity which exhibited a 26% increment in photodegradation of Methyl Orange (MO) compared to pristine ZnO under UV−Vis. the light within 90 min. These resultssuggest that Ag incorporated into ZnO will help to increase the rate offormation of O2•− and HO• reactive radicals,and\",\"PeriodicalId\":18247,\"journal\":{\"name\":\"Material Science Research India\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science Research India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/msri/190301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/msri/190301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Visible Active Photocatalyst for the Environmental Remediation
, metal-free organic polymer and stable allotrope of carbon that is mostly employed for the degradation of dyes. It absorbs visible light due to its low band gap (2.7 eV) and π-π, 2D layered electronic structure. 4 The coupling of g-C3N4 and ZnO forms a novel scaffold nanocomposite which is a sensible way to improve light absorptivity, better surface area and charge carrier separation. The studies show that the modified ZnO NPs by Ag doping coupled with g-C 3 N 4 (Ag-ZnO/gC 3 N 4 NCs) produce a composite that shows improved properties of the photocatalyst. Antibacterial materials are frequently used because they can protect human beings from many diseases that are initiated due to bacterial exposure or contact. The synthesized NCs produced considerable zones of inhibition which point towardtheir good antibacterial activity. The reactive oxygen species damage the cellular membrane, leading to cell death.The ZnO NPs and their nanocomposites of Ag and g-C 3 N 4 are synthesized by a simple cost-effective co-precipitation method. This method provides a high yield with good purity of material and beneficial than other methods because the reagents are mixed at the molecular level so as to achieve the best stoichiometry and morphology with the desired size of thematerial. 5 The capping agent SDS is an anionic surfactant, it affects the morphology and aggregation ofmaterial which enhances the photocatalytic activity. The capping agent couldadsorb on nanoparticle surfaces and control the growth rate of crystallographic planes to limit the size and shape of nanoparticles. Boosting these activities of the ZnO NPs is the foremost goal of research. The research outcome will be helpful to different environmental remediation.The photocatalytic experiments showedthat the Ag-ZnO NPs (1.0 mol%) possessed excellent photocatalytic activity which exhibited a 26% increment in photodegradation of Methyl Orange (MO) compared to pristine ZnO under UV−Vis. the light within 90 min. These resultssuggest that Ag incorporated into ZnO will help to increase the rate offormation of O2•− and HO• reactive radicals,and