用于递归构建主题层次结构的短语挖掘框架

Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen, T. Taula, Jiawei Han
{"title":"用于递归构建主题层次结构的短语挖掘框架","authors":"Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen, T. Taula, Jiawei Han","doi":"10.1145/2487575.2487631","DOIUrl":null,"url":null,"abstract":"A high quality hierarchical organization of the concepts in a dataset at different levels of granularity has many valuable applications such as search, summarization, and content browsing. In this paper we propose an algorithm for recursively constructing a hierarchy of topics from a collection of content-representative documents. We characterize each topic in the hierarchy by an integrated ranked list of mixed-length phrases. Our mining framework is based on a phrase-centric view for clustering, extracting, and ranking topical phrases. Experiments with datasets from three different domains illustrate our ability to generate hierarchies of high quality topics represented by meaningful phrases.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"A phrase mining framework for recursive construction of a topical hierarchy\",\"authors\":\"Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen, T. Taula, Jiawei Han\",\"doi\":\"10.1145/2487575.2487631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high quality hierarchical organization of the concepts in a dataset at different levels of granularity has many valuable applications such as search, summarization, and content browsing. In this paper we propose an algorithm for recursively constructing a hierarchy of topics from a collection of content-representative documents. We characterize each topic in the hierarchy by an integrated ranked list of mixed-length phrases. Our mining framework is based on a phrase-centric view for clustering, extracting, and ranking topical phrases. Experiments with datasets from three different domains illustrate our ability to generate hierarchies of high quality topics represented by meaningful phrases.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

在不同粒度级别上对数据集中的概念进行高质量的分层组织具有许多有价值的应用,例如搜索、摘要和内容浏览。在本文中,我们提出了一种从内容代表文档集合中递归构建主题层次结构的算法。我们通过混合长度短语的综合排名列表来描述层次结构中的每个主题。我们的挖掘框架基于以短语为中心的视图,用于对主题短语进行聚类、提取和排序。对来自三个不同领域的数据集进行的实验表明,我们能够生成由有意义的短语表示的高质量主题的层次结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A phrase mining framework for recursive construction of a topical hierarchy
A high quality hierarchical organization of the concepts in a dataset at different levels of granularity has many valuable applications such as search, summarization, and content browsing. In this paper we propose an algorithm for recursively constructing a hierarchy of topics from a collection of content-representative documents. We characterize each topic in the hierarchy by an integrated ranked list of mixed-length phrases. Our mining framework is based on a phrase-centric view for clustering, extracting, and ranking topical phrases. Experiments with datasets from three different domains illustrate our ability to generate hierarchies of high quality topics represented by meaningful phrases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general bootstrap performance diagnostic Flexible and robust co-regularized multi-domain graph clustering Beyond myopic inference in big data pipelines Constrained stochastic gradient descent for large-scale least squares problem Inferring distant-time location in low-sampling-rate trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1