Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen, T. Taula, Jiawei Han
{"title":"用于递归构建主题层次结构的短语挖掘框架","authors":"Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen, T. Taula, Jiawei Han","doi":"10.1145/2487575.2487631","DOIUrl":null,"url":null,"abstract":"A high quality hierarchical organization of the concepts in a dataset at different levels of granularity has many valuable applications such as search, summarization, and content browsing. In this paper we propose an algorithm for recursively constructing a hierarchy of topics from a collection of content-representative documents. We characterize each topic in the hierarchy by an integrated ranked list of mixed-length phrases. Our mining framework is based on a phrase-centric view for clustering, extracting, and ranking topical phrases. Experiments with datasets from three different domains illustrate our ability to generate hierarchies of high quality topics represented by meaningful phrases.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"A phrase mining framework for recursive construction of a topical hierarchy\",\"authors\":\"Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen, T. Taula, Jiawei Han\",\"doi\":\"10.1145/2487575.2487631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high quality hierarchical organization of the concepts in a dataset at different levels of granularity has many valuable applications such as search, summarization, and content browsing. In this paper we propose an algorithm for recursively constructing a hierarchy of topics from a collection of content-representative documents. We characterize each topic in the hierarchy by an integrated ranked list of mixed-length phrases. Our mining framework is based on a phrase-centric view for clustering, extracting, and ranking topical phrases. Experiments with datasets from three different domains illustrate our ability to generate hierarchies of high quality topics represented by meaningful phrases.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A phrase mining framework for recursive construction of a topical hierarchy
A high quality hierarchical organization of the concepts in a dataset at different levels of granularity has many valuable applications such as search, summarization, and content browsing. In this paper we propose an algorithm for recursively constructing a hierarchy of topics from a collection of content-representative documents. We characterize each topic in the hierarchy by an integrated ranked list of mixed-length phrases. Our mining framework is based on a phrase-centric view for clustering, extracting, and ranking topical phrases. Experiments with datasets from three different domains illustrate our ability to generate hierarchies of high quality topics represented by meaningful phrases.