利用声阵列进行波场处理的快速射线空间变换

Federico Borra, Mirco Pezzoli, Luca Comanducci, A. Bernardini, F. Antonacci, S. Tubaro, A. Sarti
{"title":"利用声阵列进行波场处理的快速射线空间变换","authors":"Federico Borra, Mirco Pezzoli, Luca Comanducci, A. Bernardini, F. Antonacci, S. Tubaro, A. Sarti","doi":"10.23919/Eusipco47968.2020.9287380","DOIUrl":null,"url":null,"abstract":"The importance of soundfield imaging techniques is expected to further increase in the next few years thanks to the ever-increasing availability of low-cost sensors such as MEMS microphones. When it comes to processing a relevant number of sensor signals, however, the computational load of space-time processing algorithms easily grows to unmanageable levels. The Ray Space Transform (RST) was recently introduced as a promising tool for soundfield analysis. Given the collection of signals captured by a uniform linear array of microphones, the RST allows us to collect and map the directional components of the acoustic field onto a domain called \"ray space\", where relevant acoustic objects are represented as linear patterns for advanced acoustic analysis and synthesis applications. So far the computational complexity of the RST linearly increases with the number of microphones. In order to alleviate this problem, in this paper we propose an alternative efficient implementation of the RST based on the Non Uniform Fast Fourier Transform.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"26 1","pages":"186-190"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Fast Ray Space Transform for Wave Field Processing using Acoustic Arrays\",\"authors\":\"Federico Borra, Mirco Pezzoli, Luca Comanducci, A. Bernardini, F. Antonacci, S. Tubaro, A. Sarti\",\"doi\":\"10.23919/Eusipco47968.2020.9287380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of soundfield imaging techniques is expected to further increase in the next few years thanks to the ever-increasing availability of low-cost sensors such as MEMS microphones. When it comes to processing a relevant number of sensor signals, however, the computational load of space-time processing algorithms easily grows to unmanageable levels. The Ray Space Transform (RST) was recently introduced as a promising tool for soundfield analysis. Given the collection of signals captured by a uniform linear array of microphones, the RST allows us to collect and map the directional components of the acoustic field onto a domain called \\\"ray space\\\", where relevant acoustic objects are represented as linear patterns for advanced acoustic analysis and synthesis applications. So far the computational complexity of the RST linearly increases with the number of microphones. In order to alleviate this problem, in this paper we propose an alternative efficient implementation of the RST based on the Non Uniform Fast Fourier Transform.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"26 1\",\"pages\":\"186-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于MEMS麦克风等低成本传感器的不断普及,声场成像技术的重要性预计将在未来几年内进一步提高。然而,当涉及到处理相关数量的传感器信号时,时空处理算法的计算量很容易增长到难以控制的水平。射线空间变换(RST)作为声场分析的一种很有前途的工具最近被引入。考虑到由麦克风的均匀线性阵列捕获的信号的收集,RST允许我们收集声场的方向分量并将其映射到称为“射线空间”的域中,其中相关的声学对象表示为高级声学分析和合成应用的线性模式。到目前为止,RST的计算复杂度随着麦克风数量的增加而线性增加。为了缓解这一问题,本文提出了一种基于非均匀快速傅里叶变换的RST的高效实现方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast Ray Space Transform for Wave Field Processing using Acoustic Arrays
The importance of soundfield imaging techniques is expected to further increase in the next few years thanks to the ever-increasing availability of low-cost sensors such as MEMS microphones. When it comes to processing a relevant number of sensor signals, however, the computational load of space-time processing algorithms easily grows to unmanageable levels. The Ray Space Transform (RST) was recently introduced as a promising tool for soundfield analysis. Given the collection of signals captured by a uniform linear array of microphones, the RST allows us to collect and map the directional components of the acoustic field onto a domain called "ray space", where relevant acoustic objects are represented as linear patterns for advanced acoustic analysis and synthesis applications. So far the computational complexity of the RST linearly increases with the number of microphones. In order to alleviate this problem, in this paper we propose an alternative efficient implementation of the RST based on the Non Uniform Fast Fourier Transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1