具有奖励预测误差的表征学习

S. Gershman
{"title":"具有奖励预测误差的表征学习","authors":"S. Gershman","doi":"10.51628/001c.37270","DOIUrl":null,"url":null,"abstract":"The Reward Prediction Error hypothesis proposes that phasic activity in the midbrain dopaminergic system reflects prediction errors needed for learning in reinforcement learning. Besides the well-documented association between dopamine and reward processing, dopamine is implicated in a variety of functions without a clear relationship to reward prediction error. Fluctuations in dopamine levels influence the subjective perception of time, dopamine bursts precede the generation of motor responses, and the dopaminergic system innervates regions of the brain, including hippocampus and areas in prefrontal cortex, whose function is not uniquely tied to reward. In this manuscript, we propose that a common theme linking these functions is representation, and that prediction errors signaled by the dopamine system, in addition to driving associative learning, can also support the acquisition of adaptive state representations. In a series of simulations, we show how this extension can account for the role of dopamine in temporal and spatial representation, motor response, and abstract categorization tasks. By extending the role of dopamine signals to learning state representations, we resolve a critical challenge to the Reward Prediction Error hypothesis of dopamine function.","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Representation learning with reward prediction errors\",\"authors\":\"S. Gershman\",\"doi\":\"10.51628/001c.37270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Reward Prediction Error hypothesis proposes that phasic activity in the midbrain dopaminergic system reflects prediction errors needed for learning in reinforcement learning. Besides the well-documented association between dopamine and reward processing, dopamine is implicated in a variety of functions without a clear relationship to reward prediction error. Fluctuations in dopamine levels influence the subjective perception of time, dopamine bursts precede the generation of motor responses, and the dopaminergic system innervates regions of the brain, including hippocampus and areas in prefrontal cortex, whose function is not uniquely tied to reward. In this manuscript, we propose that a common theme linking these functions is representation, and that prediction errors signaled by the dopamine system, in addition to driving associative learning, can also support the acquisition of adaptive state representations. In a series of simulations, we show how this extension can account for the role of dopamine in temporal and spatial representation, motor response, and abstract categorization tasks. By extending the role of dopamine signals to learning state representations, we resolve a critical challenge to the Reward Prediction Error hypothesis of dopamine function.\",\"PeriodicalId\":74289,\"journal\":{\"name\":\"Neurons, behavior, data analysis and theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurons, behavior, data analysis and theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51628/001c.37270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51628/001c.37270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

奖励预测误差假说认为,在强化学习中,中脑多巴胺能系统的相活动反映了学习所需的预测误差。除了多巴胺和奖励处理之间有充分记录的联系外,多巴胺还涉及多种功能,但与奖励预测误差没有明确的关系。多巴胺水平的波动影响对时间的主观感知,多巴胺的爆发先于运动反应的产生,多巴胺能系统支配大脑的一些区域,包括海马体和前额皮质区域,这些区域的功能并不仅仅与奖励有关。在本文中,我们提出连接这些功能的一个共同主题是表征,并且多巴胺系统发出的预测错误信号,除了驱动联想学习外,还可以支持自适应状态表征的获取。在一系列的模拟中,我们展示了这种扩展如何解释多巴胺在时间和空间表征、运动反应和抽象分类任务中的作用。通过将多巴胺信号的作用扩展到学习状态表征,我们解决了多巴胺功能奖励预测误差假说的一个关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Representation learning with reward prediction errors
The Reward Prediction Error hypothesis proposes that phasic activity in the midbrain dopaminergic system reflects prediction errors needed for learning in reinforcement learning. Besides the well-documented association between dopamine and reward processing, dopamine is implicated in a variety of functions without a clear relationship to reward prediction error. Fluctuations in dopamine levels influence the subjective perception of time, dopamine bursts precede the generation of motor responses, and the dopaminergic system innervates regions of the brain, including hippocampus and areas in prefrontal cortex, whose function is not uniquely tied to reward. In this manuscript, we propose that a common theme linking these functions is representation, and that prediction errors signaled by the dopamine system, in addition to driving associative learning, can also support the acquisition of adaptive state representations. In a series of simulations, we show how this extension can account for the role of dopamine in temporal and spatial representation, motor response, and abstract categorization tasks. By extending the role of dopamine signals to learning state representations, we resolve a critical challenge to the Reward Prediction Error hypothesis of dopamine function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Spontaneous Firing Activity of the Motor Cortex in a Spiking Neural Network with Random and Local Connectivity Expressive architectures enhance interpretability of dynamics-based neural population models Probabilistic representations as building blocks for higher-level vision Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis Frontal effective connectivity increases with task demands and time on task: a Dynamic Causal Model of electrocorticogram in macaque monkeys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1