{"title":"可回收SERS基板的基本原理和应用","authors":"J. Prakash","doi":"10.1080/0144235X.2019.1660114","DOIUrl":null,"url":null,"abstract":"ABSTRACT Surface enhanced Raman scattering (SERS) substrates, composed of plasmonic nanostructures (PNSs) and photocatalyst semiconductors, have emerged as novel multifunctional nanomaterials for advanced engineering applications. These combinations improve the photocatalytic activity of such systems and extend their application as recyclable SERS substrates owing to their self-cleaning ability by photodegradation of analyte molecules. Such combinations allow the fabrication of highly sensitive, reproducible, stable and recyclable SERS substrates. The present article focusses on new developments in design and engineering of such recyclable SERS substrates. The recyclable SERS substrates made of PNSs (Au or Ag NSs) and semiconductor photocatalyst (metal oxides; TiO2, ZnO, WO3, Fe3O4, and others; CdS, conducting polymers, Si NSs) NSs are mainly discussed along with fundamental mechanisms of their multifunctional actions. These recyclable SERS substrates are potential candidates for the detection and elimination of organic compounds (pollutants) as discussed in detail with special emphasis on their reproducibility and long term stability. In addition, current challenges and future potential requirements are also discussed.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fundamentals and applications of recyclable SERS substrates\",\"authors\":\"J. Prakash\",\"doi\":\"10.1080/0144235X.2019.1660114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Surface enhanced Raman scattering (SERS) substrates, composed of plasmonic nanostructures (PNSs) and photocatalyst semiconductors, have emerged as novel multifunctional nanomaterials for advanced engineering applications. These combinations improve the photocatalytic activity of such systems and extend their application as recyclable SERS substrates owing to their self-cleaning ability by photodegradation of analyte molecules. Such combinations allow the fabrication of highly sensitive, reproducible, stable and recyclable SERS substrates. The present article focusses on new developments in design and engineering of such recyclable SERS substrates. The recyclable SERS substrates made of PNSs (Au or Ag NSs) and semiconductor photocatalyst (metal oxides; TiO2, ZnO, WO3, Fe3O4, and others; CdS, conducting polymers, Si NSs) NSs are mainly discussed along with fundamental mechanisms of their multifunctional actions. These recyclable SERS substrates are potential candidates for the detection and elimination of organic compounds (pollutants) as discussed in detail with special emphasis on their reproducibility and long term stability. In addition, current challenges and future potential requirements are also discussed.\",\"PeriodicalId\":54932,\"journal\":{\"name\":\"International Reviews in Physical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Reviews in Physical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/0144235X.2019.1660114\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews in Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0144235X.2019.1660114","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fundamentals and applications of recyclable SERS substrates
ABSTRACT Surface enhanced Raman scattering (SERS) substrates, composed of plasmonic nanostructures (PNSs) and photocatalyst semiconductors, have emerged as novel multifunctional nanomaterials for advanced engineering applications. These combinations improve the photocatalytic activity of such systems and extend their application as recyclable SERS substrates owing to their self-cleaning ability by photodegradation of analyte molecules. Such combinations allow the fabrication of highly sensitive, reproducible, stable and recyclable SERS substrates. The present article focusses on new developments in design and engineering of such recyclable SERS substrates. The recyclable SERS substrates made of PNSs (Au or Ag NSs) and semiconductor photocatalyst (metal oxides; TiO2, ZnO, WO3, Fe3O4, and others; CdS, conducting polymers, Si NSs) NSs are mainly discussed along with fundamental mechanisms of their multifunctional actions. These recyclable SERS substrates are potential candidates for the detection and elimination of organic compounds (pollutants) as discussed in detail with special emphasis on their reproducibility and long term stability. In addition, current challenges and future potential requirements are also discussed.
期刊介绍:
International Reviews in Physical Chemistry publishes review articles describing frontier research areas in physical chemistry. Internationally renowned scientists describe their own research in the wider context of the field. The articles are of interest not only to specialists but also to those wishing to read general and authoritative accounts of recent developments in physical chemistry, chemical physics and theoretical chemistry. The journal appeals to research workers, lecturers and research students alike.