一种可替代的空气分配解决方案,以改善国际空间站船员宿舍的环境质量

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Ventilation Pub Date : 2021-09-13 DOI:10.1080/14733315.2021.1975062
M. Georgescu, A. Meslem, I. Năstase, L. Tacutu
{"title":"一种可替代的空气分配解决方案,以改善国际空间站船员宿舍的环境质量","authors":"M. Georgescu, A. Meslem, I. Năstase, L. Tacutu","doi":"10.1080/14733315.2021.1975062","DOIUrl":null,"url":null,"abstract":"Abstract This article presents the study of a ventilation solution using cross-flow fans for the crew quarters (CQ) aboard the International Space Station. Currently the CQ uses two axial fans for ventilation, which occasionally generate insufficient flow rate or acoustic issues. A ventilation circuit using two cross-flow fans was designed, its acoustic performance was measured and the flow was investigated via CFD by using the measured cross-flow fan operating curves as boundary conditions. The acoustic performance of the fans was evaluated in isothermal conditions, under the assumption that the heat generated by the occupants and equipment would produce negligible thermal buoyancy effects in microgravity on the station. Future studies will investigate how the internal heat generated in the enclosure affects the thermal comfort conditions of the occupants. After a comparison between the axial and cross-flow fan systems, results indicate that the latter provides better acoustic parameters for the same flow rate with less energy consumption.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"24 1","pages":"24 - 39"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An alternative air distribution solution for better environmental quality in the ISS crew quarters\",\"authors\":\"M. Georgescu, A. Meslem, I. Năstase, L. Tacutu\",\"doi\":\"10.1080/14733315.2021.1975062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents the study of a ventilation solution using cross-flow fans for the crew quarters (CQ) aboard the International Space Station. Currently the CQ uses two axial fans for ventilation, which occasionally generate insufficient flow rate or acoustic issues. A ventilation circuit using two cross-flow fans was designed, its acoustic performance was measured and the flow was investigated via CFD by using the measured cross-flow fan operating curves as boundary conditions. The acoustic performance of the fans was evaluated in isothermal conditions, under the assumption that the heat generated by the occupants and equipment would produce negligible thermal buoyancy effects in microgravity on the station. Future studies will investigate how the internal heat generated in the enclosure affects the thermal comfort conditions of the occupants. After a comparison between the axial and cross-flow fan systems, results indicate that the latter provides better acoustic parameters for the same flow rate with less energy consumption.\",\"PeriodicalId\":55613,\"journal\":{\"name\":\"International Journal of Ventilation\",\"volume\":\"24 1\",\"pages\":\"24 - 39\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ventilation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14733315.2021.1975062\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2021.1975062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

摘要:本文研究了国际空间站乘员舱(CQ)的横流风扇通风解决方案。目前CQ采用两个轴流风机进行通风,偶尔会产生流量不足或声音问题。设计了一个由两个交叉流风机组成的通风回路,以交叉流风机运行曲线作为边界条件,对其声学性能进行了测量,并通过CFD对其流动进行了研究。在等温条件下评估风扇的声学性能,假设乘员和设备产生的热量在微重力条件下对空间站产生的热浮力效应可以忽略不计。未来的研究将探讨在围护结构中产生的内部热量如何影响居住者的热舒适条件。通过对轴流和横流风机系统的比较,结果表明,横流风机系统在相同流量下具有较好的声学参数,且能耗较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An alternative air distribution solution for better environmental quality in the ISS crew quarters
Abstract This article presents the study of a ventilation solution using cross-flow fans for the crew quarters (CQ) aboard the International Space Station. Currently the CQ uses two axial fans for ventilation, which occasionally generate insufficient flow rate or acoustic issues. A ventilation circuit using two cross-flow fans was designed, its acoustic performance was measured and the flow was investigated via CFD by using the measured cross-flow fan operating curves as boundary conditions. The acoustic performance of the fans was evaluated in isothermal conditions, under the assumption that the heat generated by the occupants and equipment would produce negligible thermal buoyancy effects in microgravity on the station. Future studies will investigate how the internal heat generated in the enclosure affects the thermal comfort conditions of the occupants. After a comparison between the axial and cross-flow fan systems, results indicate that the latter provides better acoustic parameters for the same flow rate with less energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Ventilation
International Journal of Ventilation CONSTRUCTION & BUILDING TECHNOLOGY-ENERGY & FUELS
CiteScore
3.50
自引率
6.70%
发文量
7
审稿时长
>12 weeks
期刊介绍: This is a peer reviewed journal aimed at providing the latest information on research and application. Topics include: • New ideas concerned with the development or application of ventilation; • Validated case studies demonstrating the performance of ventilation strategies; • Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc; • Developments in numerical methods; • Measurement techniques; • Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort); • Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss); • Driving forces (weather data, fan performance etc).
期刊最新文献
Assessing thermal resilience to overheating in a Belgian apartment: impact of building parameters Passive ventilation for building not subjected to solar radiation Experimental study on the periodic pulsating ventilation by fluidic oscillator on pollutant dispersion and ventilation performance in enclosed environment Compartmentalization and ventilation system impacts on air and contaminant transport for multifamily buildings Controllable baffle-type exhaust-hood in home kitchen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1