{"title":"在使用独立防砂筛管完成的斜度井中,定位出水源并进行经济高效的无钻机补救作业","authors":"A. Timonin, Eldar Mollaniyazov","doi":"10.2118/208547-ms","DOIUrl":null,"url":null,"abstract":"Wells that are already drilled and producing are the most viable sources of future earnings for all oilfield operating companies. Keeping these wells producing economically at optimal rates throughout their lifetimes is top priority. With time, some oilfield operating companies face with production related problems, such us water breakthrough.\n Production logging is well known technique for locating source of water breakthrough in oil and gas producers. In near-vertical, or slightly deviated wells, producing at high rates, traditional production logging tool string can deliver reliable results. On the other side, in deviated wells, producing at small rates, advanced production logging tool is required, due to presence of fluid segregation and recirculation within borehole. Our experience shows that wisely selected logging technique, depending on downhole logging environment, allows to locate source of water production with confidence for planning water shut-off remedial operations.\n In wells completed with standalone sand screens water shut-off operation might be complicated as often rig is required for pulling out of hole tubing with sand screens. Another method is to perform chemical water shut-off treatment that might be expensive in some cases. Alternative method is to confirm compact sand accumulation in the annulus and set through tubing bridge plug inside sand screens in wells that producing water from bottommost layers. Plug is deployed in wells without pulling out of hole tubing, as it can pass through restrictions, making this rigless intervention fifty times cheaper compared to intervention with rig.\n Field examples, presented in this paper, describe fit-for-purpose logging approach for locating source of water production accurately and executing unique rigless water shut-off operations in cased wells completed with standalone sand screens to increase hydrocarbons production in cost-effective way. After remedial operations we observed significant decline in water production and increase in oil rates in all wells that were intervened.","PeriodicalId":11215,"journal":{"name":"Day 2 Wed, November 24, 2021","volume":"48 7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Locating Source of Water Production and Performing Cost-Effective Rigless Remedial Operations in Deviated Wells Completed with Standalone Sand Screens\",\"authors\":\"A. Timonin, Eldar Mollaniyazov\",\"doi\":\"10.2118/208547-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wells that are already drilled and producing are the most viable sources of future earnings for all oilfield operating companies. Keeping these wells producing economically at optimal rates throughout their lifetimes is top priority. With time, some oilfield operating companies face with production related problems, such us water breakthrough.\\n Production logging is well known technique for locating source of water breakthrough in oil and gas producers. In near-vertical, or slightly deviated wells, producing at high rates, traditional production logging tool string can deliver reliable results. On the other side, in deviated wells, producing at small rates, advanced production logging tool is required, due to presence of fluid segregation and recirculation within borehole. Our experience shows that wisely selected logging technique, depending on downhole logging environment, allows to locate source of water production with confidence for planning water shut-off remedial operations.\\n In wells completed with standalone sand screens water shut-off operation might be complicated as often rig is required for pulling out of hole tubing with sand screens. Another method is to perform chemical water shut-off treatment that might be expensive in some cases. Alternative method is to confirm compact sand accumulation in the annulus and set through tubing bridge plug inside sand screens in wells that producing water from bottommost layers. Plug is deployed in wells without pulling out of hole tubing, as it can pass through restrictions, making this rigless intervention fifty times cheaper compared to intervention with rig.\\n Field examples, presented in this paper, describe fit-for-purpose logging approach for locating source of water production accurately and executing unique rigless water shut-off operations in cased wells completed with standalone sand screens to increase hydrocarbons production in cost-effective way. After remedial operations we observed significant decline in water production and increase in oil rates in all wells that were intervened.\",\"PeriodicalId\":11215,\"journal\":{\"name\":\"Day 2 Wed, November 24, 2021\",\"volume\":\"48 7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, November 24, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208547-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, November 24, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208547-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Locating Source of Water Production and Performing Cost-Effective Rigless Remedial Operations in Deviated Wells Completed with Standalone Sand Screens
Wells that are already drilled and producing are the most viable sources of future earnings for all oilfield operating companies. Keeping these wells producing economically at optimal rates throughout their lifetimes is top priority. With time, some oilfield operating companies face with production related problems, such us water breakthrough.
Production logging is well known technique for locating source of water breakthrough in oil and gas producers. In near-vertical, or slightly deviated wells, producing at high rates, traditional production logging tool string can deliver reliable results. On the other side, in deviated wells, producing at small rates, advanced production logging tool is required, due to presence of fluid segregation and recirculation within borehole. Our experience shows that wisely selected logging technique, depending on downhole logging environment, allows to locate source of water production with confidence for planning water shut-off remedial operations.
In wells completed with standalone sand screens water shut-off operation might be complicated as often rig is required for pulling out of hole tubing with sand screens. Another method is to perform chemical water shut-off treatment that might be expensive in some cases. Alternative method is to confirm compact sand accumulation in the annulus and set through tubing bridge plug inside sand screens in wells that producing water from bottommost layers. Plug is deployed in wells without pulling out of hole tubing, as it can pass through restrictions, making this rigless intervention fifty times cheaper compared to intervention with rig.
Field examples, presented in this paper, describe fit-for-purpose logging approach for locating source of water production accurately and executing unique rigless water shut-off operations in cased wells completed with standalone sand screens to increase hydrocarbons production in cost-effective way. After remedial operations we observed significant decline in water production and increase in oil rates in all wells that were intervened.