M. Wu, Ri Liang Wu, Chuang Qi Zang, Chang Yuan Yu, Y. Liu
{"title":"Fe3O4@Carbon/氧化石墨烯纳米复合材料去除废水中Cu(II)的应用","authors":"M. Wu, Ri Liang Wu, Chuang Qi Zang, Chang Yuan Yu, Y. Liu","doi":"10.4028/p-309506","DOIUrl":null,"url":null,"abstract":"The Cu2+ in the drinking water has a very serious impact on human health and social ecology. Many countries have the policy on the Cu2+ concentration limitation in drinking water and the industrial Cu2+ emission standards for the treated wastewater. Scientists have developed many methods to remove Cu2+ from wastewater. Among all the adsorption method is widely used due to its high efficacy, feasibility and low cost. The adsorbent is critical to achieving superior Cu2+ removal result. In this paper, Fe3O4/carbon-graphene oxide nanocomposites (Fe3O4@C-GO) were prepared by a hydrothermal method. The Fe3O4@C-GO is the main absorbent to Cu2+ through chemisorption. The specific surface area of Fe3O4@C-GO dramatically increases from 16 m2/g of Fe3O4@C to 62 m2/g, which expands the Cu2+ absorption capacity up to 350 mg/g. Fe3O4 nanoparticles with about 12 nm in diameter are uniformly encapsulated in the C-GO matrix, and therefore the Fe3O4@C-GO can be easily separated from the solution via magnetics. This adsorbent is also very easily recovered by an external magnetic field from the treated wastewater and has high reusability.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"11 1","pages":"41 - 58"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Fe3O4@Carbon/Graphene Oxide Nanocomposites for Cu(II) Removal from Wastewater\",\"authors\":\"M. Wu, Ri Liang Wu, Chuang Qi Zang, Chang Yuan Yu, Y. Liu\",\"doi\":\"10.4028/p-309506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cu2+ in the drinking water has a very serious impact on human health and social ecology. Many countries have the policy on the Cu2+ concentration limitation in drinking water and the industrial Cu2+ emission standards for the treated wastewater. Scientists have developed many methods to remove Cu2+ from wastewater. Among all the adsorption method is widely used due to its high efficacy, feasibility and low cost. The adsorbent is critical to achieving superior Cu2+ removal result. In this paper, Fe3O4/carbon-graphene oxide nanocomposites (Fe3O4@C-GO) were prepared by a hydrothermal method. The Fe3O4@C-GO is the main absorbent to Cu2+ through chemisorption. The specific surface area of Fe3O4@C-GO dramatically increases from 16 m2/g of Fe3O4@C to 62 m2/g, which expands the Cu2+ absorption capacity up to 350 mg/g. Fe3O4 nanoparticles with about 12 nm in diameter are uniformly encapsulated in the C-GO matrix, and therefore the Fe3O4@C-GO can be easily separated from the solution via magnetics. This adsorbent is also very easily recovered by an external magnetic field from the treated wastewater and has high reusability.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"11 1\",\"pages\":\"41 - 58\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-309506\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-309506","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of Fe3O4@Carbon/Graphene Oxide Nanocomposites for Cu(II) Removal from Wastewater
The Cu2+ in the drinking water has a very serious impact on human health and social ecology. Many countries have the policy on the Cu2+ concentration limitation in drinking water and the industrial Cu2+ emission standards for the treated wastewater. Scientists have developed many methods to remove Cu2+ from wastewater. Among all the adsorption method is widely used due to its high efficacy, feasibility and low cost. The adsorbent is critical to achieving superior Cu2+ removal result. In this paper, Fe3O4/carbon-graphene oxide nanocomposites (Fe3O4@C-GO) were prepared by a hydrothermal method. The Fe3O4@C-GO is the main absorbent to Cu2+ through chemisorption. The specific surface area of Fe3O4@C-GO dramatically increases from 16 m2/g of Fe3O4@C to 62 m2/g, which expands the Cu2+ absorption capacity up to 350 mg/g. Fe3O4 nanoparticles with about 12 nm in diameter are uniformly encapsulated in the C-GO matrix, and therefore the Fe3O4@C-GO can be easily separated from the solution via magnetics. This adsorbent is also very easily recovered by an external magnetic field from the treated wastewater and has high reusability.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.