元胞自动机SIRS+V混合模型中流行病出现的时空动力学

A. Shabunin
{"title":"元胞自动机SIRS+V混合模型中流行病出现的时空动力学","authors":"A. Shabunin","doi":"10.18500/0869-6632-003042","DOIUrl":null,"url":null,"abstract":"Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic cellular automata, which takes into account the inertial nature of infection transmission between individuals. Identification of the relationship between the spatial and temporal dynamics of the model depending on the probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking into account the inertial nature of the transmission of infection between individuals of the population, which is realized by introducing a \"carrier agent\" into the model, which viruses act as. The similarity and difference between the dynamics of the cellular automata model and the previously studied mean field model are revealed. Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such as the regime of undamped oscillations.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata\",\"authors\":\"A. Shabunin\",\"doi\":\"10.18500/0869-6632-003042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic cellular automata, which takes into account the inertial nature of infection transmission between individuals. Identification of the relationship between the spatial and temporal dynamics of the model depending on the probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking into account the inertial nature of the transmission of infection between individuals of the population, which is realized by introducing a \\\"carrier agent\\\" into the model, which viruses act as. The similarity and difference between the dynamics of the cellular automata model and the previously studied mean field model are revealed. Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such as the regime of undamped oscillations.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目的是建立一个以概率元胞自动机晶格形式的感染传播模型,该模型考虑了个体之间感染传播的惯性性质。根据个体迁移的概率确定模型的时空动态之间的关系。方法。用蒙特卡罗方法对元胞自动机晶格的随机动力学进行数值模拟。结果。构造了一种改进的SIRS+V模型,其形式为概率元胞自动机格。它与标准模型的不同之处在于,它考虑到群体中个体之间感染传播的惯性性质,这是通过在模型中引入病毒扮演的“载体因子”来实现的。揭示了元胞自动机模型与以往研究的平均场模型动力学特性的异同。讨论。细胞自动机形式的模型使我们能够研究感染在人群中传播的过程,包括在疾病空间异质性分布的条件下。如果个体迁移的概率不太高,就会出现后一种情况。与此同时,这些过程的定量特征可能发生重大变化,同时也可能出现定性的新模式,例如无阻尼振荡的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata
Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic cellular automata, which takes into account the inertial nature of infection transmission between individuals. Identification of the relationship between the spatial and temporal dynamics of the model depending on the probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking into account the inertial nature of the transmission of infection between individuals of the population, which is realized by introducing a "carrier agent" into the model, which viruses act as. The similarity and difference between the dynamics of the cellular automata model and the previously studied mean field model are revealed. Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such as the regime of undamped oscillations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1