高质量x射线双星的射线照相——通过柱密度变化的恒星风的微观结构

I. Mellah, V. Grinberg, J. Sundqvist, F. A. Driessen, M. Leutenegger
{"title":"高质量x射线双星的射线照相——通过柱密度变化的恒星风的微观结构","authors":"I. Mellah, V. Grinberg, J. Sundqvist, F. A. Driessen, M. Leutenegger","doi":"10.1051/0004-6361/202038791E","DOIUrl":null,"url":null,"abstract":"In high mass X-ray binaries (HMXBs), an accreting compact object orbits a high mass star which loses mass through a dense and inhomogeneous wind. Using the compact object as an X-ray backlight, the time variability of the absorbing column density in the wind can be exploited in order to shed light on the micro-structure of the wind and obtain unbiased stellar mass loss rates for high mass stars. We explore the impact of clumpiness on the variability of the column density with a simplified wind model. In particular, we focus on the standard deviation of the column density and the characteristic duration of enhanced absorption episodes, and compare them with analytical predictions based on the porosity length. We identified the favorable systems and orbital phases to determine the wind micro-structure. The coherence time scale of the column density is shown to be the self-crossing time of a clump in front of the compact object. We provide a recipe to get accurate measurements of the size and of the mass of the clumps, purely based on the observable time variability of the column density. The coherence time scale grants direct access to the size of the clumps while their mass can be deduced separately from the amplitude of the variability. If it is due to unaccreted passing-by clumps, the high column density variations in some HMXBs requires high mass clumps to reproduce the observed peak-to-peak amplitude and coherence time scales. These clump properties are hardly compatible with the ones derived from first principles. Alternatively, other components could contribute to the variability of the column density: larger orbital scale structures produced by a mechanism still to be identified, or a dense environment in the immediate vicinity of the accretor such as an accretion disk, an outflow or a spherical shell around the magnetosphere of the accreting neutron star.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Radiography in high mass X-ray binaries -- Micro-structure of the stellar wind through variability of the column density\",\"authors\":\"I. Mellah, V. Grinberg, J. Sundqvist, F. A. Driessen, M. Leutenegger\",\"doi\":\"10.1051/0004-6361/202038791E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high mass X-ray binaries (HMXBs), an accreting compact object orbits a high mass star which loses mass through a dense and inhomogeneous wind. Using the compact object as an X-ray backlight, the time variability of the absorbing column density in the wind can be exploited in order to shed light on the micro-structure of the wind and obtain unbiased stellar mass loss rates for high mass stars. We explore the impact of clumpiness on the variability of the column density with a simplified wind model. In particular, we focus on the standard deviation of the column density and the characteristic duration of enhanced absorption episodes, and compare them with analytical predictions based on the porosity length. We identified the favorable systems and orbital phases to determine the wind micro-structure. The coherence time scale of the column density is shown to be the self-crossing time of a clump in front of the compact object. We provide a recipe to get accurate measurements of the size and of the mass of the clumps, purely based on the observable time variability of the column density. The coherence time scale grants direct access to the size of the clumps while their mass can be deduced separately from the amplitude of the variability. If it is due to unaccreted passing-by clumps, the high column density variations in some HMXBs requires high mass clumps to reproduce the observed peak-to-peak amplitude and coherence time scales. These clump properties are hardly compatible with the ones derived from first principles. Alternatively, other components could contribute to the variability of the column density: larger orbital scale structures produced by a mechanism still to be identified, or a dense environment in the immediate vicinity of the accretor such as an accretion disk, an outflow or a spherical shell around the magnetosphere of the accreting neutron star.\",\"PeriodicalId\":8437,\"journal\":{\"name\":\"arXiv: High Energy Astrophysical Phenomena\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202038791E\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202038791E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在高质量x射线双星(hmxb)中,一个吸积的致密天体围绕着一颗高质量恒星运行,而这颗恒星通过密集和不均匀的风失去质量。利用致密物体作为x射线背光,可以利用吸收柱密度在风中的时间变异性来揭示风的微观结构,并获得大质量恒星的无偏恒星质量损失率。我们用一个简化的风模型探讨了团块对柱密度变异性的影响。我们特别关注柱密度的标准偏差和增强吸收事件的特征持续时间,并将它们与基于孔隙度长度的分析预测进行比较。我们确定了有利的系统和轨道相位来确定风的微观结构。柱密度的相干时间尺度表示为紧致物体前方团块的自穿越时间。我们提供了一个配方,以获得精确测量的大小和团块的质量,纯粹基于可观察到的时间变化的柱密度。相干时间尺度允许直接获得团块的大小,而它们的质量可以从变异性的幅度单独推断出来。如果是由于未吸积的路过团块,则某些hmxb中的高柱密度变化需要高质量团块来重现观测到的峰对峰振幅和相干时间尺度。这些团块性质很难与从第一性原理推导出来的性质相容。或者,其他成分也可能导致柱密度的变化:由一种尚待确定的机制产生的更大的轨道尺度结构,或者在吸积体附近的致密环境,如吸积盘、流出物或吸积中子星磁层周围的球壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiography in high mass X-ray binaries -- Micro-structure of the stellar wind through variability of the column density
In high mass X-ray binaries (HMXBs), an accreting compact object orbits a high mass star which loses mass through a dense and inhomogeneous wind. Using the compact object as an X-ray backlight, the time variability of the absorbing column density in the wind can be exploited in order to shed light on the micro-structure of the wind and obtain unbiased stellar mass loss rates for high mass stars. We explore the impact of clumpiness on the variability of the column density with a simplified wind model. In particular, we focus on the standard deviation of the column density and the characteristic duration of enhanced absorption episodes, and compare them with analytical predictions based on the porosity length. We identified the favorable systems and orbital phases to determine the wind micro-structure. The coherence time scale of the column density is shown to be the self-crossing time of a clump in front of the compact object. We provide a recipe to get accurate measurements of the size and of the mass of the clumps, purely based on the observable time variability of the column density. The coherence time scale grants direct access to the size of the clumps while their mass can be deduced separately from the amplitude of the variability. If it is due to unaccreted passing-by clumps, the high column density variations in some HMXBs requires high mass clumps to reproduce the observed peak-to-peak amplitude and coherence time scales. These clump properties are hardly compatible with the ones derived from first principles. Alternatively, other components could contribute to the variability of the column density: larger orbital scale structures produced by a mechanism still to be identified, or a dense environment in the immediate vicinity of the accretor such as an accretion disk, an outflow or a spherical shell around the magnetosphere of the accreting neutron star.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing cosmic-ray positron and electron observations to probe the averaged properties of Milky Way pulsars EuCAPT White Paper: Opportunities and Challenges for Theoretical Astroparticle Physics in the Next Decade The galactic millisecond pulsar population : implications for the Galactic Center Excess. Spectral-temporal features of repeating ( one-off ) FRBs and Axion Star. AstroSat/UVIT observations of IC 4329A: constraining the accretion disc inner radius
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1