β钛合金高温拉伸流动行为及断裂研究

Saurabh Rai, Kalyani Panigrahi
{"title":"β钛合金高温拉伸流动行为及断裂研究","authors":"Saurabh Rai, Kalyani Panigrahi","doi":"10.47363/jmsmr/2021(2)121","DOIUrl":null,"url":null,"abstract":"Tensile testing on metastable beta alloy with various microstructures was carried out in this study. Beta 21S is a metastable alloy that exhibits a wide range of material characteristics depending on the processing techniques used. Three different sheets that have been used in this paper which has the same substance but three different microstructures. At a strain rate of 0.001/s, the tensile test was done on a single sheet at five different temperatures. The sheet has developed varied microstructures, the tensile nature of the material varies the alloy’s characteristics. Mechanical characteristics for 400°C, 500°C, 600°C, and 7000°C are described for 21S sheets. The alpha phase sheet elongated at room temperature by 1-3 %, whereas the pure beta phase sheet elongated by 22-24 %. There is a significant improvement in the extension of the sheet with the variation in temperature for the alpha phase. The elongation of the pure beta phase does not alter as the temperature rises. The fracture surface was tested at all temperatures and the optimal temperature for forming the sheet has been determined","PeriodicalId":16328,"journal":{"name":"Journal of Material Sciences & Manufacturing Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile Flow Behaviour and Fracture Studies of Beta Titanium Alloys at Elevated Temperatures\",\"authors\":\"Saurabh Rai, Kalyani Panigrahi\",\"doi\":\"10.47363/jmsmr/2021(2)121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensile testing on metastable beta alloy with various microstructures was carried out in this study. Beta 21S is a metastable alloy that exhibits a wide range of material characteristics depending on the processing techniques used. Three different sheets that have been used in this paper which has the same substance but three different microstructures. At a strain rate of 0.001/s, the tensile test was done on a single sheet at five different temperatures. The sheet has developed varied microstructures, the tensile nature of the material varies the alloy’s characteristics. Mechanical characteristics for 400°C, 500°C, 600°C, and 7000°C are described for 21S sheets. The alpha phase sheet elongated at room temperature by 1-3 %, whereas the pure beta phase sheet elongated by 22-24 %. There is a significant improvement in the extension of the sheet with the variation in temperature for the alpha phase. The elongation of the pure beta phase does not alter as the temperature rises. The fracture surface was tested at all temperatures and the optimal temperature for forming the sheet has been determined\",\"PeriodicalId\":16328,\"journal\":{\"name\":\"Journal of Material Sciences & Manufacturing Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Sciences & Manufacturing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47363/jmsmr/2021(2)121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Manufacturing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47363/jmsmr/2021(2)121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对不同组织的亚稳态β合金进行了拉伸试验。β 21S是一种亚稳态合金,根据所使用的加工技术表现出广泛的材料特性。这篇论文中使用了三种不同的薄片,它们有相同的物质,但有三种不同的微观结构。在应变速率为0.001/s的情况下,在5种不同温度下对单片材进行拉伸试验。板材已发展出多种显微组织,材料的拉伸性质改变了合金的特性。描述了21S板在400°C, 500°C, 600°C和7000°C下的机械特性。室温下α相片的伸长率为1- 3%,而纯β相片的伸长率为22- 24%。随着α相温度的变化,薄片的延伸有了显著的改善。纯β相的伸长率不随温度的升高而改变。在各种温度下对断口表面进行了测试,确定了板料成形的最佳温度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensile Flow Behaviour and Fracture Studies of Beta Titanium Alloys at Elevated Temperatures
Tensile testing on metastable beta alloy with various microstructures was carried out in this study. Beta 21S is a metastable alloy that exhibits a wide range of material characteristics depending on the processing techniques used. Three different sheets that have been used in this paper which has the same substance but three different microstructures. At a strain rate of 0.001/s, the tensile test was done on a single sheet at five different temperatures. The sheet has developed varied microstructures, the tensile nature of the material varies the alloy’s characteristics. Mechanical characteristics for 400°C, 500°C, 600°C, and 7000°C are described for 21S sheets. The alpha phase sheet elongated at room temperature by 1-3 %, whereas the pure beta phase sheet elongated by 22-24 %. There is a significant improvement in the extension of the sheet with the variation in temperature for the alpha phase. The elongation of the pure beta phase does not alter as the temperature rises. The fracture surface was tested at all temperatures and the optimal temperature for forming the sheet has been determined
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Role of Acid Concentration on Band Gap Shrinkage in Cellulose Nanocrystals Fabricated from Water Hyacinth Comparative Evaluation of Potential Impacts of Agricultural and Industrial Waste Pozzolanic Binders on Strengths of Concrete Tensile Flow Behaviour and Fracture Studies of Beta Titanium Alloys at Elevated Temperatures Directed Energy Beam Weapons the Dawn of a New Military Age Influence of Longitudinal Scratch Defects on the Bendability of Titanium Alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1