面向恶劣环境的倒转LiNbO3全光电场传感器

D. Tulli, D. Janner, V. Pruneri
{"title":"面向恶劣环境的倒转LiNbO3全光电场传感器","authors":"D. Tulli, D. Janner, V. Pruneri","doi":"10.1109/CLEOE.2011.5943284","DOIUrl":null,"url":null,"abstract":"Optical high-voltage sensors have outstanding advantages in terms of isolation and immunity to electromagnetic interference. So far, several configurations have been proposed, mostly based on integrated Mach-Zehnder interferometers [1] or polarization/phase rotation in piezo-electric crystal [2]. While the first scheme requires initial electrical bias to compensate for the phase mismatch between the two arms, the second one requires interrogation or phase noise reduction systems that are expensive to implement. Near cut-off optical waveguide devices have been already reported in LiNbO3. In particular, the use of waveguides at cut-off was proposed for modulation in the field of optical communications [3,4] and sensing [5]. We present a novel integrated optical high voltage sensor based on a Z-cut LiNbO3 which operates without any metallic parts. The proposed device is sketched in Fig. 1 (left). An annealed proton exchange (APE) waveguide near cut-off is fabricated in Z-cut LiNbO3 and centered in a domain inverted region. The application of an external electric field parallel to the z axis of the device produces a refractive index change Δn± between positive and negative domains given by ne3·r33·E, where E is the intensity of the external electric field along the z-axis, ne=2.14 and r33=30.8 pm/V are the refractive index and the electro-optic coefficient along the z-axis, respectively. As a consequence the optical mode will broaden so that, after a sufficient propagation length, a loss is produced due to a mode-profile mismatch of the guided modes between active and passive regions.","PeriodicalId":6331,"journal":{"name":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"All-optical electric field sensor in domain inverted LiNbO3 for harsh environment\",\"authors\":\"D. Tulli, D. Janner, V. Pruneri\",\"doi\":\"10.1109/CLEOE.2011.5943284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical high-voltage sensors have outstanding advantages in terms of isolation and immunity to electromagnetic interference. So far, several configurations have been proposed, mostly based on integrated Mach-Zehnder interferometers [1] or polarization/phase rotation in piezo-electric crystal [2]. While the first scheme requires initial electrical bias to compensate for the phase mismatch between the two arms, the second one requires interrogation or phase noise reduction systems that are expensive to implement. Near cut-off optical waveguide devices have been already reported in LiNbO3. In particular, the use of waveguides at cut-off was proposed for modulation in the field of optical communications [3,4] and sensing [5]. We present a novel integrated optical high voltage sensor based on a Z-cut LiNbO3 which operates without any metallic parts. The proposed device is sketched in Fig. 1 (left). An annealed proton exchange (APE) waveguide near cut-off is fabricated in Z-cut LiNbO3 and centered in a domain inverted region. The application of an external electric field parallel to the z axis of the device produces a refractive index change Δn± between positive and negative domains given by ne3·r33·E, where E is the intensity of the external electric field along the z-axis, ne=2.14 and r33=30.8 pm/V are the refractive index and the electro-optic coefficient along the z-axis, respectively. As a consequence the optical mode will broaden so that, after a sufficient propagation length, a loss is produced due to a mode-profile mismatch of the guided modes between active and passive regions.\",\"PeriodicalId\":6331,\"journal\":{\"name\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE.2011.5943284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2011.5943284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光学高压传感器在隔离和抗电磁干扰方面具有突出的优势。到目前为止,已经提出了几种构型,主要基于集成马赫-曾德尔干涉仪[1]或压电晶体的极化/相位旋转[2]。虽然第一种方案需要初始电偏置来补偿两个臂之间的相位不匹配,但第二种方案需要询问或相位降噪系统,这些系统的实施成本很高。在LiNbO3中已经报道了近截止光波导器件。特别是,在光通信[3,4]和传感[5]领域,提出了在截止点使用波导进行调制。我们提出了一种基于z形切割LiNbO3的新型集成光学高压传感器,该传感器不需要任何金属部件。所提出的装置如图1(左)所示。在z -切割LiNbO3中制备了近截止的退火质子交换(APE)波导,该波导以畴反转区为中心。施加平行于器件z轴的外加电场,产生的正负畴之间的折射率变化Δn±由ne3·r33·E给出,其中E为沿z轴方向的外加电场强度,ne=2.14和r33=30.8 pm/V分别为沿z轴方向的折射率和电光系数。因此,光学模式将变宽,因此,在足够的传播长度之后,由于主动和被动区域之间的引导模式的模式轮廓不匹配而产生损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All-optical electric field sensor in domain inverted LiNbO3 for harsh environment
Optical high-voltage sensors have outstanding advantages in terms of isolation and immunity to electromagnetic interference. So far, several configurations have been proposed, mostly based on integrated Mach-Zehnder interferometers [1] or polarization/phase rotation in piezo-electric crystal [2]. While the first scheme requires initial electrical bias to compensate for the phase mismatch between the two arms, the second one requires interrogation or phase noise reduction systems that are expensive to implement. Near cut-off optical waveguide devices have been already reported in LiNbO3. In particular, the use of waveguides at cut-off was proposed for modulation in the field of optical communications [3,4] and sensing [5]. We present a novel integrated optical high voltage sensor based on a Z-cut LiNbO3 which operates without any metallic parts. The proposed device is sketched in Fig. 1 (left). An annealed proton exchange (APE) waveguide near cut-off is fabricated in Z-cut LiNbO3 and centered in a domain inverted region. The application of an external electric field parallel to the z axis of the device produces a refractive index change Δn± between positive and negative domains given by ne3·r33·E, where E is the intensity of the external electric field along the z-axis, ne=2.14 and r33=30.8 pm/V are the refractive index and the electro-optic coefficient along the z-axis, respectively. As a consequence the optical mode will broaden so that, after a sufficient propagation length, a loss is produced due to a mode-profile mismatch of the guided modes between active and passive regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optomechanical crystals and their quantum optical applications Few-quantum-dot lasing in photonic crystal nanocavities Generation of a macroscopic singlet state in an atomic ensemble High-power ultrafast laser source with 300 MHz repetition rate for trapped-ion quantum logic Infrared spectroscopic determination of drugs in saliva
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1