使用文本相似性度量提高重复错误报告检测的准确性

A. Lazar, Sarah Ritchey, Bonita Sharif
{"title":"使用文本相似性度量提高重复错误报告检测的准确性","authors":"A. Lazar, Sarah Ritchey, Bonita Sharif","doi":"10.1145/2597073.2597088","DOIUrl":null,"url":null,"abstract":"The paper describes an improved method for automatic duplicate bug report detection based on new textual similarity features and binary classification. Using a set of new textual features, inspired from recent text similarity research, we train several binary classification models. A case study was conducted on three open source systems: Eclipse, Open Office, and Mozilla to determine the effectiveness of the improved method. A comparison is also made with current state-of-the-art approaches highlighting similarities and differences. Results indicate that the accuracy of the proposed method is better than previously reported research with respect to all three systems.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"16 1 1","pages":"308-311"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Improving the accuracy of duplicate bug report detection using textual similarity measures\",\"authors\":\"A. Lazar, Sarah Ritchey, Bonita Sharif\",\"doi\":\"10.1145/2597073.2597088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes an improved method for automatic duplicate bug report detection based on new textual similarity features and binary classification. Using a set of new textual features, inspired from recent text similarity research, we train several binary classification models. A case study was conducted on three open source systems: Eclipse, Open Office, and Mozilla to determine the effectiveness of the improved method. A comparison is also made with current state-of-the-art approaches highlighting similarities and differences. Results indicate that the accuracy of the proposed method is better than previously reported research with respect to all three systems.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"16 1 1\",\"pages\":\"308-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2597073.2597088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597073.2597088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

本文提出了一种基于文本相似度特征和二元分类的重复错误自动检测方法。利用一组新的文本特征,从最近的文本相似度研究中获得灵感,我们训练了几个二元分类模型。在三个开源系统:Eclipse、open Office和Mozilla上进行了一个案例研究,以确定改进方法的有效性。还与当前最先进的方法进行了比较,突出了相似性和差异性。结果表明,所提出的方法的准确性优于先前报道的研究,就所有三个系统而言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the accuracy of duplicate bug report detection using textual similarity measures
The paper describes an improved method for automatic duplicate bug report detection based on new textual similarity features and binary classification. Using a set of new textual features, inspired from recent text similarity research, we train several binary classification models. A case study was conducted on three open source systems: Eclipse, Open Office, and Mozilla to determine the effectiveness of the improved method. A comparison is also made with current state-of-the-art approaches highlighting similarities and differences. Results indicate that the accuracy of the proposed method is better than previously reported research with respect to all three systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSR '20: 17th International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020 Who you gonna call?: analyzing web requests in Android applications Cena słońca w projektowaniu architektonicznym Multi-extract and Multi-level Dataset of Mozilla Issue Tracking History Interactive Exploration of Developer Interaction Traces using a Hidden Markov Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1