{"title":"使用文本相似性度量提高重复错误报告检测的准确性","authors":"A. Lazar, Sarah Ritchey, Bonita Sharif","doi":"10.1145/2597073.2597088","DOIUrl":null,"url":null,"abstract":"The paper describes an improved method for automatic duplicate bug report detection based on new textual similarity features and binary classification. Using a set of new textual features, inspired from recent text similarity research, we train several binary classification models. A case study was conducted on three open source systems: Eclipse, Open Office, and Mozilla to determine the effectiveness of the improved method. A comparison is also made with current state-of-the-art approaches highlighting similarities and differences. Results indicate that the accuracy of the proposed method is better than previously reported research with respect to all three systems.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"16 1 1","pages":"308-311"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Improving the accuracy of duplicate bug report detection using textual similarity measures\",\"authors\":\"A. Lazar, Sarah Ritchey, Bonita Sharif\",\"doi\":\"10.1145/2597073.2597088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes an improved method for automatic duplicate bug report detection based on new textual similarity features and binary classification. Using a set of new textual features, inspired from recent text similarity research, we train several binary classification models. A case study was conducted on three open source systems: Eclipse, Open Office, and Mozilla to determine the effectiveness of the improved method. A comparison is also made with current state-of-the-art approaches highlighting similarities and differences. Results indicate that the accuracy of the proposed method is better than previously reported research with respect to all three systems.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"16 1 1\",\"pages\":\"308-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2597073.2597088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597073.2597088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the accuracy of duplicate bug report detection using textual similarity measures
The paper describes an improved method for automatic duplicate bug report detection based on new textual similarity features and binary classification. Using a set of new textual features, inspired from recent text similarity research, we train several binary classification models. A case study was conducted on three open source systems: Eclipse, Open Office, and Mozilla to determine the effectiveness of the improved method. A comparison is also made with current state-of-the-art approaches highlighting similarities and differences. Results indicate that the accuracy of the proposed method is better than previously reported research with respect to all three systems.