{"title":"强化表面管内制冷剂混合物压降研究","authors":"S. Sami, J. Grell","doi":"10.1115/imece2001/pid-25614","DOIUrl":null,"url":null,"abstract":"\n Two phase flow pressure drop characteristics observed during condensation and boiling of azeotropic refrigerant mixtures R-404A (R125/R134a/R143a:44/4/52), R-407B (R32/R125/ R134a:10/70/20), R407C (R32/R125/R134a:23/25/52) and R408A (R22/R125/R143a:46/7/47) are presented in this paper.\n Experiments showed that for liquid Reynolds numbers higher than 3.00 E06, R-408A appears to have greater heat transfer rates than the other blends under investigation. Furthermore, it is quite evident from this data that R-407C has the highest specific pressure drop among the refrigerants under investigation.","PeriodicalId":9805,"journal":{"name":"Chemical and Process Industries","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of Pressure Drop of Refrigerant Mixtures Inside Enhanced Surface Tubing\",\"authors\":\"S. Sami, J. Grell\",\"doi\":\"10.1115/imece2001/pid-25614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Two phase flow pressure drop characteristics observed during condensation and boiling of azeotropic refrigerant mixtures R-404A (R125/R134a/R143a:44/4/52), R-407B (R32/R125/ R134a:10/70/20), R407C (R32/R125/R134a:23/25/52) and R408A (R22/R125/R143a:46/7/47) are presented in this paper.\\n Experiments showed that for liquid Reynolds numbers higher than 3.00 E06, R-408A appears to have greater heat transfer rates than the other blends under investigation. Furthermore, it is quite evident from this data that R-407C has the highest specific pressure drop among the refrigerants under investigation.\",\"PeriodicalId\":9805,\"journal\":{\"name\":\"Chemical and Process Industries\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Process Industries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/pid-25614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Process Industries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/pid-25614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Pressure Drop of Refrigerant Mixtures Inside Enhanced Surface Tubing
Two phase flow pressure drop characteristics observed during condensation and boiling of azeotropic refrigerant mixtures R-404A (R125/R134a/R143a:44/4/52), R-407B (R32/R125/ R134a:10/70/20), R407C (R32/R125/R134a:23/25/52) and R408A (R22/R125/R143a:46/7/47) are presented in this paper.
Experiments showed that for liquid Reynolds numbers higher than 3.00 E06, R-408A appears to have greater heat transfer rates than the other blends under investigation. Furthermore, it is quite evident from this data that R-407C has the highest specific pressure drop among the refrigerants under investigation.