B. Farahbakhsh, S. H. Moosavirad, Y. Asadi, A. Amirbeigi
{"title":"建立模糊规划模型以改善门诊预约安排","authors":"B. Farahbakhsh, S. H. Moosavirad, Y. Asadi, A. Amirbeigi","doi":"10.22111/IJFS.2021.6183","DOIUrl":null,"url":null,"abstract":"Appointment scheduling for outpatient services is a challenge in the healthcare sector. For addressing this challenge, most studies assumed that patients’ unpunctuality and the duration of service have constant values or a specific probability distribution function. Consequently, there is a research gap to consider the uncertainty of both patients’ unpunctuality and the duration of service in terms of fuzzy sets. Therefore, this research aims to consider fuzzy values for both unpunctuality and duration of service have to improve an outpatient appointment scheduling (the time interval between two patients) in a referral clinic with the objective of reducing the total weight of waiting time, idle time, and overtime. Four different fuzzy linear programming models and 36 scenarios have been developed based on the show, no-show of patients, single-book, and double-book by using GAMS software. These four models are as follows: (1) probability of no-show equal to zero, (2) probability of no-show equal to 20%, (3) probability of no-show equal to zero and with double-book factor, and (4) probability of no-show equal to 20% and with double-book factor. The results of the first, second, third, and fourth models, respectively, present the scenarios considering 10, 5, 15, and 15 minutes for the time interval between two patients that have the minimum total weight of patient waiting times, physician idle times, and physician overtime. By considering these findings, the investigated referral clinic can improve its appointment system’s performance. Moreover, other similar clinics can apply the proposed model for improving their appointment systems' performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a fuzzy programming model for improving outpatient appointment scheduling\",\"authors\":\"B. Farahbakhsh, S. H. Moosavirad, Y. Asadi, A. Amirbeigi\",\"doi\":\"10.22111/IJFS.2021.6183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Appointment scheduling for outpatient services is a challenge in the healthcare sector. For addressing this challenge, most studies assumed that patients’ unpunctuality and the duration of service have constant values or a specific probability distribution function. Consequently, there is a research gap to consider the uncertainty of both patients’ unpunctuality and the duration of service in terms of fuzzy sets. Therefore, this research aims to consider fuzzy values for both unpunctuality and duration of service have to improve an outpatient appointment scheduling (the time interval between two patients) in a referral clinic with the objective of reducing the total weight of waiting time, idle time, and overtime. Four different fuzzy linear programming models and 36 scenarios have been developed based on the show, no-show of patients, single-book, and double-book by using GAMS software. These four models are as follows: (1) probability of no-show equal to zero, (2) probability of no-show equal to 20%, (3) probability of no-show equal to zero and with double-book factor, and (4) probability of no-show equal to 20% and with double-book factor. The results of the first, second, third, and fourth models, respectively, present the scenarios considering 10, 5, 15, and 15 minutes for the time interval between two patients that have the minimum total weight of patient waiting times, physician idle times, and physician overtime. By considering these findings, the investigated referral clinic can improve its appointment system’s performance. Moreover, other similar clinics can apply the proposed model for improving their appointment systems' performance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6183\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6183","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Developing a fuzzy programming model for improving outpatient appointment scheduling
Appointment scheduling for outpatient services is a challenge in the healthcare sector. For addressing this challenge, most studies assumed that patients’ unpunctuality and the duration of service have constant values or a specific probability distribution function. Consequently, there is a research gap to consider the uncertainty of both patients’ unpunctuality and the duration of service in terms of fuzzy sets. Therefore, this research aims to consider fuzzy values for both unpunctuality and duration of service have to improve an outpatient appointment scheduling (the time interval between two patients) in a referral clinic with the objective of reducing the total weight of waiting time, idle time, and overtime. Four different fuzzy linear programming models and 36 scenarios have been developed based on the show, no-show of patients, single-book, and double-book by using GAMS software. These four models are as follows: (1) probability of no-show equal to zero, (2) probability of no-show equal to 20%, (3) probability of no-show equal to zero and with double-book factor, and (4) probability of no-show equal to 20% and with double-book factor. The results of the first, second, third, and fourth models, respectively, present the scenarios considering 10, 5, 15, and 15 minutes for the time interval between two patients that have the minimum total weight of patient waiting times, physician idle times, and physician overtime. By considering these findings, the investigated referral clinic can improve its appointment system’s performance. Moreover, other similar clinics can apply the proposed model for improving their appointment systems' performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.