空间闭合对分段拱受力系统的影响:实验-数值研究

Fábio Rodrigo Mandello Rodrigues, M. Ferreira, S. Ignácio, M. Luersen, P. Borges
{"title":"空间闭合对分段拱受力系统的影响:实验-数值研究","authors":"Fábio Rodrigo Mandello Rodrigues, M. Ferreira, S. Ignácio, M. Luersen, P. Borges","doi":"10.4015/s1016237223500072","DOIUrl":null,"url":null,"abstract":"Objective: To perform an experimental-numerical analysis to study the influence of the interbracket distance (IBD) on the spring’s mechanical behavior and on the resulting force system during space closure in the segmented arch technique (SAT). Material and Methods: Twenty delta springs (DSs) made of beta-titanium alloy, [Formula: see text] inch, were tested on a platform transducer. A Young’s modulus ([Formula: see text] of 69 GPa ([Formula: see text] psi) and Yield’s strength ([Formula: see text] of 1240 MPa ([Formula: see text] psi) were used. The springs were activated considering different IBDs. The spring was modeled in autodesk Inventor software and its behavior was simulated using the finite element (FE) code Ansys Workbench. Results: The ANOVA showed a significant difference in the studied variables with a reliability of over 95% (only for the activation variable there was an effect upon the horizontal forces (Fx). The Tukey HSD and the Games–Howell post hoc multiple comparisons tests were applied to identify differences between the treatments for heterogeneous variances. Conclusions: The IBDs do not significantly affect the force system during space closure, even though there was an increase in the Mz/Fx ratio as spring deactivates. Activation can cause a statistically significant effect on the force system even though the force showed safe levels. At 4[Formula: see text]mm activation (19[Formula: see text]mm IBD), the spring wire starts yielding, i.e. plastic deformation occurs near the anterior attachment due to the shorter IBD.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPACE CLOSURE EFFECT ON FORCE SYSTEM IN THE SEGMENTED ARCH: AN EXPERIMENTAL-NUMERICAL STUDY\",\"authors\":\"Fábio Rodrigo Mandello Rodrigues, M. Ferreira, S. Ignácio, M. Luersen, P. Borges\",\"doi\":\"10.4015/s1016237223500072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: To perform an experimental-numerical analysis to study the influence of the interbracket distance (IBD) on the spring’s mechanical behavior and on the resulting force system during space closure in the segmented arch technique (SAT). Material and Methods: Twenty delta springs (DSs) made of beta-titanium alloy, [Formula: see text] inch, were tested on a platform transducer. A Young’s modulus ([Formula: see text] of 69 GPa ([Formula: see text] psi) and Yield’s strength ([Formula: see text] of 1240 MPa ([Formula: see text] psi) were used. The springs were activated considering different IBDs. The spring was modeled in autodesk Inventor software and its behavior was simulated using the finite element (FE) code Ansys Workbench. Results: The ANOVA showed a significant difference in the studied variables with a reliability of over 95% (only for the activation variable there was an effect upon the horizontal forces (Fx). The Tukey HSD and the Games–Howell post hoc multiple comparisons tests were applied to identify differences between the treatments for heterogeneous variances. Conclusions: The IBDs do not significantly affect the force system during space closure, even though there was an increase in the Mz/Fx ratio as spring deactivates. Activation can cause a statistically significant effect on the force system even though the force showed safe levels. At 4[Formula: see text]mm activation (19[Formula: see text]mm IBD), the spring wire starts yielding, i.e. plastic deformation occurs near the anterior attachment due to the shorter IBD.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237223500072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:通过实验-数值分析研究分段拱技术(SAT)空间闭合过程中,托槽间距(IBD)对弹簧力学行为及产生的力系统的影响。材料和方法:在平台传感器上测试了20个由β -钛合金制成的三角弹簧(ds),[公式:见文]英寸。杨氏模量([公式:见文])为69 GPa([公式:见文]psi),屈服强度([公式:见文]1240 MPa([公式:见文]psi)。根据不同的ibd来激活弹簧。在autodesk Inventor软件中对弹簧进行建模,并利用有限元软件Ansys Workbench对弹簧的行为进行仿真。结果:方差分析显示,研究变量之间存在显著差异,信度超过95%(只有激活变量对水平力(Fx)有影响)。应用Tukey HSD和Games-Howell事后多重比较检验来确定异质性差异处理之间的差异。结论:在空间闭合过程中,尽管当弹簧停用时Mz/Fx比率增加,但ibd对力系统没有显著影响。激活可以对力系统产生统计上显著的影响,即使力显示出安全水平。在4[公式:见文]mm激活(19[公式:见文]mm IBD)时,弹簧丝开始屈服,即由于IBD较短,在前附着处附近发生塑性变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPACE CLOSURE EFFECT ON FORCE SYSTEM IN THE SEGMENTED ARCH: AN EXPERIMENTAL-NUMERICAL STUDY
Objective: To perform an experimental-numerical analysis to study the influence of the interbracket distance (IBD) on the spring’s mechanical behavior and on the resulting force system during space closure in the segmented arch technique (SAT). Material and Methods: Twenty delta springs (DSs) made of beta-titanium alloy, [Formula: see text] inch, were tested on a platform transducer. A Young’s modulus ([Formula: see text] of 69 GPa ([Formula: see text] psi) and Yield’s strength ([Formula: see text] of 1240 MPa ([Formula: see text] psi) were used. The springs were activated considering different IBDs. The spring was modeled in autodesk Inventor software and its behavior was simulated using the finite element (FE) code Ansys Workbench. Results: The ANOVA showed a significant difference in the studied variables with a reliability of over 95% (only for the activation variable there was an effect upon the horizontal forces (Fx). The Tukey HSD and the Games–Howell post hoc multiple comparisons tests were applied to identify differences between the treatments for heterogeneous variances. Conclusions: The IBDs do not significantly affect the force system during space closure, even though there was an increase in the Mz/Fx ratio as spring deactivates. Activation can cause a statistically significant effect on the force system even though the force showed safe levels. At 4[Formula: see text]mm activation (19[Formula: see text]mm IBD), the spring wire starts yielding, i.e. plastic deformation occurs near the anterior attachment due to the shorter IBD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering: Applications, Basis and Communications
Biomedical Engineering: Applications, Basis and Communications Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.50
自引率
11.10%
发文量
36
审稿时长
4 months
期刊介绍: Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies. Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.
期刊最新文献
CORRELATION OF POINCARE PLOT DERIVED STRESS SCORE AND HEART RATE VARIABILITY PARAMETERS IN THE ASSESSMENT OF CORONARY ARTERY DISEASE HEURISTIC-ASSISTED ADAPTIVE HYBRID DEEP LEARNING MODEL WITH FEATURE SELECTION FOR EPILEPSY DETECTION USING EEG SIGNALS MAGNETIC RESONANCE IMAGE DENOIZING USING A DUAL-CHANNEL DISCRIMINATIVE DENOIZING NETWORK PREDICTION OF EPILEPSY BASED ON EEMD AND LSSVM DOUBLE CLASSIFICATION FILTER SELECTION FOR REMOVING NOISE FROM CT SCAN IMAGES USING DIGITAL IMAGE PROCESSING ALGORITHM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1