S. Maeyama, A. Ishizawa, Tomoyasu Watanabe, M. Koric, N. Nakajima, S. Tsuji-Iio, H. Tsutsui
{"title":"时变E×B流动对平板离子-温度梯度湍流的影响","authors":"S. Maeyama, A. Ishizawa, Tomoyasu Watanabe, M. Koric, N. Nakajima, S. Tsuji-Iio, H. Tsutsui","doi":"10.1063/1.3432121","DOIUrl":null,"url":null,"abstract":"Effects of time-varying sheared E×B flow on turbulence driven by slab ion temperature gradient instabilities are investigated by means of Landau fluid simulation. Here, the E×B flow, which consists of stationary and time-periodic oscillatory parts, is externally imposed to the turbulence. The dependence on the amplitude and frequency of E×B flow is examined in the case that the amplitude of oscillatory part is the same or less than that of stationary part. The ion heat transport caused by turbulence oscillates with the same period as the E×B flow and the time-averaged transport coefficient is larger than the coefficient which is evaluated without the oscillatory part. The time-averaged coefficient is maximized when the amplitude of oscillatory part is equal to that of stationary part. As the frequency of E×B flow increases, the time-averaged coefficient decreases and is close to the coefficient which is evaluated without the oscillatory part. This mechanism is explained by introducing a kind of the logist...","PeriodicalId":7974,"journal":{"name":"Annual Report of National Institute for Fusion Science","volume":"10 18 1","pages":"324"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effects of Time-varying E×B Flow on Slab Ion-temperature-gradient Turbulence\",\"authors\":\"S. Maeyama, A. Ishizawa, Tomoyasu Watanabe, M. Koric, N. Nakajima, S. Tsuji-Iio, H. Tsutsui\",\"doi\":\"10.1063/1.3432121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effects of time-varying sheared E×B flow on turbulence driven by slab ion temperature gradient instabilities are investigated by means of Landau fluid simulation. Here, the E×B flow, which consists of stationary and time-periodic oscillatory parts, is externally imposed to the turbulence. The dependence on the amplitude and frequency of E×B flow is examined in the case that the amplitude of oscillatory part is the same or less than that of stationary part. The ion heat transport caused by turbulence oscillates with the same period as the E×B flow and the time-averaged transport coefficient is larger than the coefficient which is evaluated without the oscillatory part. The time-averaged coefficient is maximized when the amplitude of oscillatory part is equal to that of stationary part. As the frequency of E×B flow increases, the time-averaged coefficient decreases and is close to the coefficient which is evaluated without the oscillatory part. This mechanism is explained by introducing a kind of the logist...\",\"PeriodicalId\":7974,\"journal\":{\"name\":\"Annual Report of National Institute for Fusion Science\",\"volume\":\"10 18 1\",\"pages\":\"324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Report of National Institute for Fusion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.3432121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Report of National Institute for Fusion Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.3432121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Time-varying E×B Flow on Slab Ion-temperature-gradient Turbulence
Effects of time-varying sheared E×B flow on turbulence driven by slab ion temperature gradient instabilities are investigated by means of Landau fluid simulation. Here, the E×B flow, which consists of stationary and time-periodic oscillatory parts, is externally imposed to the turbulence. The dependence on the amplitude and frequency of E×B flow is examined in the case that the amplitude of oscillatory part is the same or less than that of stationary part. The ion heat transport caused by turbulence oscillates with the same period as the E×B flow and the time-averaged transport coefficient is larger than the coefficient which is evaluated without the oscillatory part. The time-averaged coefficient is maximized when the amplitude of oscillatory part is equal to that of stationary part. As the frequency of E×B flow increases, the time-averaged coefficient decreases and is close to the coefficient which is evaluated without the oscillatory part. This mechanism is explained by introducing a kind of the logist...