{"title":"基于鸡群优化的自适应猎鹿神经网络模型的网页预测","authors":"Roshan Gangurde","doi":"10.1142/s1793962322500647","DOIUrl":null,"url":null,"abstract":"The world wide web acts as the dominant tool for data transmission due to access such as data retrieving and data transactions. The retrieval of data from the web is a complex procedure due to the large volume of web domain. The basic uses of the websites are described through web usage mining, which mines the weblog records to identify the pattern of accessing the web pages through the user. The web page prediction assists the web users in finding the plot and obtains the information as to their requirements. Several effective algorithms have been developed to mine association rules that make the predictive model more appropriate for web prediction. They can be commonly revised to ensure the changing feature of web access patterns. The Apriori algorithm involves extracting the recurrent itemset and interrelation rule that learns the relational data is commonly utilized for web page prediction. The Apriori algorithm remains the standard model for deriving the patterns and rules from the datasets in co-operative rule extraction. The Apriori algorithm thus generates large mines associated rules for web page prediction. Hence, to select the best rule, the proposed deer hunting rooster-based chicken swarm optimization algorithm is used by integrating the cockerel search agents’ dominating social search creatures’ hunting habits and their traits of looking for food. Further, the neural network (NN) is employed in this research for the prediction of web pages with minimum error. The trained NN is a technique of unsupervised learning that analyzes a dataset of input to produce the desired result, in which the effectiveness of the NN is enhanced by optimal tuning of weight by the adaptive deer hunting rooster-based chicken swarm optimization algorithm. The experimental analysis illustrates that the proposed adaptive deer hunting rooster-based chicken swarm optimization frameworks inherit lower error measures such as mean deviation = 139.89 and symmetric mean absolute percentage error[Formula: see text]0.45579 for the FIFA dataset. The proposed web page prediction models’ L2 norm and infinity norm are 58.017 and 14, respectively, for the MSNBC_SPMF dataset.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"444 1","pages":"2250064:1-2250064:26"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Web page prediction using adaptive deer hunting with chicken swarm optimization based neural network model\",\"authors\":\"Roshan Gangurde\",\"doi\":\"10.1142/s1793962322500647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world wide web acts as the dominant tool for data transmission due to access such as data retrieving and data transactions. The retrieval of data from the web is a complex procedure due to the large volume of web domain. The basic uses of the websites are described through web usage mining, which mines the weblog records to identify the pattern of accessing the web pages through the user. The web page prediction assists the web users in finding the plot and obtains the information as to their requirements. Several effective algorithms have been developed to mine association rules that make the predictive model more appropriate for web prediction. They can be commonly revised to ensure the changing feature of web access patterns. The Apriori algorithm involves extracting the recurrent itemset and interrelation rule that learns the relational data is commonly utilized for web page prediction. The Apriori algorithm remains the standard model for deriving the patterns and rules from the datasets in co-operative rule extraction. The Apriori algorithm thus generates large mines associated rules for web page prediction. Hence, to select the best rule, the proposed deer hunting rooster-based chicken swarm optimization algorithm is used by integrating the cockerel search agents’ dominating social search creatures’ hunting habits and their traits of looking for food. Further, the neural network (NN) is employed in this research for the prediction of web pages with minimum error. The trained NN is a technique of unsupervised learning that analyzes a dataset of input to produce the desired result, in which the effectiveness of the NN is enhanced by optimal tuning of weight by the adaptive deer hunting rooster-based chicken swarm optimization algorithm. The experimental analysis illustrates that the proposed adaptive deer hunting rooster-based chicken swarm optimization frameworks inherit lower error measures such as mean deviation = 139.89 and symmetric mean absolute percentage error[Formula: see text]0.45579 for the FIFA dataset. The proposed web page prediction models’ L2 norm and infinity norm are 58.017 and 14, respectively, for the MSNBC_SPMF dataset.\",\"PeriodicalId\":13657,\"journal\":{\"name\":\"Int. J. Model. Simul. Sci. Comput.\",\"volume\":\"444 1\",\"pages\":\"2250064:1-2250064:26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Model. Simul. Sci. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793962322500647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Model. Simul. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962322500647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Web page prediction using adaptive deer hunting with chicken swarm optimization based neural network model
The world wide web acts as the dominant tool for data transmission due to access such as data retrieving and data transactions. The retrieval of data from the web is a complex procedure due to the large volume of web domain. The basic uses of the websites are described through web usage mining, which mines the weblog records to identify the pattern of accessing the web pages through the user. The web page prediction assists the web users in finding the plot and obtains the information as to their requirements. Several effective algorithms have been developed to mine association rules that make the predictive model more appropriate for web prediction. They can be commonly revised to ensure the changing feature of web access patterns. The Apriori algorithm involves extracting the recurrent itemset and interrelation rule that learns the relational data is commonly utilized for web page prediction. The Apriori algorithm remains the standard model for deriving the patterns and rules from the datasets in co-operative rule extraction. The Apriori algorithm thus generates large mines associated rules for web page prediction. Hence, to select the best rule, the proposed deer hunting rooster-based chicken swarm optimization algorithm is used by integrating the cockerel search agents’ dominating social search creatures’ hunting habits and their traits of looking for food. Further, the neural network (NN) is employed in this research for the prediction of web pages with minimum error. The trained NN is a technique of unsupervised learning that analyzes a dataset of input to produce the desired result, in which the effectiveness of the NN is enhanced by optimal tuning of weight by the adaptive deer hunting rooster-based chicken swarm optimization algorithm. The experimental analysis illustrates that the proposed adaptive deer hunting rooster-based chicken swarm optimization frameworks inherit lower error measures such as mean deviation = 139.89 and symmetric mean absolute percentage error[Formula: see text]0.45579 for the FIFA dataset. The proposed web page prediction models’ L2 norm and infinity norm are 58.017 and 14, respectively, for the MSNBC_SPMF dataset.