{"title":"小鼠肌萎缩侧索硬化模型","authors":"Jodie Stephenson , Sandra Amor","doi":"10.1016/j.ddmod.2018.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease for which there is limited treatment. Riluzole, that extends life by several months, has been the only ALS drug for 22 years until the recent FDA approval of Edaravone. Despite many promising compounds identified in preclinical studies in the SOD1<sup>G93A</sup> mouse model, few have translated to the clinic. The failure to translate therapies in animals to people with ALS has questioned the validity of the SOD1<sup>G93A</sup> mouse model, especially since these mutations are only present in 1–2% of people with ALS. Here, we review the mouse models that are key for drug development in ALS. The key features of each genetic subgroup are discussed and the models are compared. We also propose how the models could be further developed to better model ALS and thus more effectively advance ALS drug discovery. We recommend the use of a wider range of ALS mouse models in drug development to represent the broader ALS population and subgroups.</p></div>","PeriodicalId":39774,"journal":{"name":"Drug Discovery Today: Disease Models","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmod.2018.10.001","citationCount":"13","resultStr":"{\"title\":\"Modelling amyotrophic lateral sclerosis in mice\",\"authors\":\"Jodie Stephenson , Sandra Amor\",\"doi\":\"10.1016/j.ddmod.2018.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease for which there is limited treatment. Riluzole, that extends life by several months, has been the only ALS drug for 22 years until the recent FDA approval of Edaravone. Despite many promising compounds identified in preclinical studies in the SOD1<sup>G93A</sup> mouse model, few have translated to the clinic. The failure to translate therapies in animals to people with ALS has questioned the validity of the SOD1<sup>G93A</sup> mouse model, especially since these mutations are only present in 1–2% of people with ALS. Here, we review the mouse models that are key for drug development in ALS. The key features of each genetic subgroup are discussed and the models are compared. We also propose how the models could be further developed to better model ALS and thus more effectively advance ALS drug discovery. We recommend the use of a wider range of ALS mouse models in drug development to represent the broader ALS population and subgroups.</p></div>\",\"PeriodicalId\":39774,\"journal\":{\"name\":\"Drug Discovery Today: Disease Models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmod.2018.10.001\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Disease Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740675718300082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Disease Models","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740675718300082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease for which there is limited treatment. Riluzole, that extends life by several months, has been the only ALS drug for 22 years until the recent FDA approval of Edaravone. Despite many promising compounds identified in preclinical studies in the SOD1G93A mouse model, few have translated to the clinic. The failure to translate therapies in animals to people with ALS has questioned the validity of the SOD1G93A mouse model, especially since these mutations are only present in 1–2% of people with ALS. Here, we review the mouse models that are key for drug development in ALS. The key features of each genetic subgroup are discussed and the models are compared. We also propose how the models could be further developed to better model ALS and thus more effectively advance ALS drug discovery. We recommend the use of a wider range of ALS mouse models in drug development to represent the broader ALS population and subgroups.
期刊介绍:
Drug Discovery Today: Disease Models discusses the non-human experimental models through which inference is drawn regarding the molecular aetiology and pathogenesis of human disease. It provides critical analysis and evaluation of which models can genuinely inform the research community about the direct process of human disease, those which may have value in basic toxicology, and those which are simply designed for effective expression and raw characterisation.