子序列异常检测的无监督系统

Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas
{"title":"子序列异常检测的无监督系统","authors":"Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas","doi":"10.1109/ICDE48307.2020.00168","DOIUrl":null,"url":null,"abstract":"Subsequence anomaly (or outlier) detection in long sequences is an important problem with applications in a wide range of domains. However, current approaches have severe limitations: they either require prior domain knowledge, or become cumbersome and expensive to use in situations with recurrent anomalies of the same type. We recently proposed NorM, a novel approach suitable for domain-agnostic anomaly detection, which addresses the aforementioned problems by detecting anomalies based on their (dis)similarity to a model that represents normal behavior. The experimental results on several real datasets demonstrate that the proposed approach outperforms the current state-of-the art in terms of both accuracy and execution time. In this demonstration, we present a system for unsupervised Subsequence Anomaly Detection (SAD) that uses the NorM method. Through various scenarios with real datasets, we showcase the challenges of the problem, and we demonstrate the advantages of the proposed system.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"1 1","pages":"1778-1781"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"SAD: An Unsupervised System for Subsequence Anomaly Detection\",\"authors\":\"Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas\",\"doi\":\"10.1109/ICDE48307.2020.00168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subsequence anomaly (or outlier) detection in long sequences is an important problem with applications in a wide range of domains. However, current approaches have severe limitations: they either require prior domain knowledge, or become cumbersome and expensive to use in situations with recurrent anomalies of the same type. We recently proposed NorM, a novel approach suitable for domain-agnostic anomaly detection, which addresses the aforementioned problems by detecting anomalies based on their (dis)similarity to a model that represents normal behavior. The experimental results on several real datasets demonstrate that the proposed approach outperforms the current state-of-the art in terms of both accuracy and execution time. In this demonstration, we present a system for unsupervised Subsequence Anomaly Detection (SAD) that uses the NorM method. Through various scenarios with real datasets, we showcase the challenges of the problem, and we demonstrate the advantages of the proposed system.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"1 1\",\"pages\":\"1778-1781\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

长序列的子序列异常(或离群值)检测是一个重要的问题,具有广泛的应用领域。然而,当前的方法有严重的局限性:它们要么需要先前的领域知识,要么在具有相同类型的反复出现的异常的情况下使用起来繁琐且昂贵。我们最近提出了NorM,一种适用于领域不可知异常检测的新方法,它通过基于异常与表示正常行为的模型的(非)相似性来检测异常,从而解决了上述问题。在几个真实数据集上的实验结果表明,该方法在准确率和执行时间方面都优于目前的技术水平。在这个演示中,我们提出了一个使用NorM方法的无监督子序列异常检测(SAD)系统。通过使用真实数据集的各种场景,我们展示了该问题的挑战,并展示了所提出系统的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAD: An Unsupervised System for Subsequence Anomaly Detection
Subsequence anomaly (or outlier) detection in long sequences is an important problem with applications in a wide range of domains. However, current approaches have severe limitations: they either require prior domain knowledge, or become cumbersome and expensive to use in situations with recurrent anomalies of the same type. We recently proposed NorM, a novel approach suitable for domain-agnostic anomaly detection, which addresses the aforementioned problems by detecting anomalies based on their (dis)similarity to a model that represents normal behavior. The experimental results on several real datasets demonstrate that the proposed approach outperforms the current state-of-the art in terms of both accuracy and execution time. In this demonstration, we present a system for unsupervised Subsequence Anomaly Detection (SAD) that uses the NorM method. Through various scenarios with real datasets, we showcase the challenges of the problem, and we demonstrate the advantages of the proposed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach Mobility-Aware Dynamic Taxi Ridesharing Multiscale Frequent Co-movement Pattern Mining Automatic Calibration of Road Intersection Topology using Trajectories Turbine: Facebook’s Service Management Platform for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1