一种利用落重偏转计数据估计路面性能的概率方法

O. Melchor-Lucero, I. Abdallah, S. Nazarian, C. Ferregut
{"title":"一种利用落重偏转计数据估计路面性能的概率方法","authors":"O. Melchor-Lucero, I. Abdallah, S. Nazarian, C. Ferregut","doi":"10.1201/9781003078814-52","DOIUrl":null,"url":null,"abstract":"Most mechanistic-empirical methods for determining the integrity of an existing pavement rely on the use of deflection-based nondestructive evaluation devices and a number of models to estimate the remaining life associated with a flexible pavement. We have developed a software tool that integrates artificial neural network (ANN) technology, the functional condition of pavement, uncertainty analysis and traffic information to predict a probabilistic pavement performance curve. The ANN models predict the critical strains at the layer interfaces, using readily available data such as the best estimates of each layer thickness and surface deflections from a Falling Weight Deflectometer test. As such, the backcalculation process is eliminated. Based on the validation results from an accelerated pavement testing facility and a test track, the system seems to be robust and appears to provide reasonable results. For the covering abstract see ITRD E118503.","PeriodicalId":11581,"journal":{"name":"Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Volume 1","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Probabilistic Method for Estimating Pavement Performance Using Falling Weight Deflectometer Data\",\"authors\":\"O. Melchor-Lucero, I. Abdallah, S. Nazarian, C. Ferregut\",\"doi\":\"10.1201/9781003078814-52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most mechanistic-empirical methods for determining the integrity of an existing pavement rely on the use of deflection-based nondestructive evaluation devices and a number of models to estimate the remaining life associated with a flexible pavement. We have developed a software tool that integrates artificial neural network (ANN) technology, the functional condition of pavement, uncertainty analysis and traffic information to predict a probabilistic pavement performance curve. The ANN models predict the critical strains at the layer interfaces, using readily available data such as the best estimates of each layer thickness and surface deflections from a Falling Weight Deflectometer test. As such, the backcalculation process is eliminated. Based on the validation results from an accelerated pavement testing facility and a test track, the system seems to be robust and appears to provide reasonable results. For the covering abstract see ITRD E118503.\",\"PeriodicalId\":11581,\"journal\":{\"name\":\"Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Volume 1\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Volume 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781003078814-52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003078814-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数用于确定现有路面完整性的机械经验方法依赖于使用基于挠度的无损评估设备和许多模型来估计与柔性路面相关的剩余寿命。我们开发了一个软件工具,集成了人工神经网络(ANN)技术、路面功能状况、不确定性分析和交通信息来预测概率路面性能曲线。人工神经网络模型预测层界面的临界应变,使用现成的数据,如每层厚度和表面挠度的最佳估计,从下落重量挠度计测试。因此,消除了反计算过程。基于加速路面测试设施和测试轨道的验证结果,该系统似乎是稳健的,并且似乎提供了合理的结果。相关摘要见ITRD E118503。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Probabilistic Method for Estimating Pavement Performance Using Falling Weight Deflectometer Data
Most mechanistic-empirical methods for determining the integrity of an existing pavement rely on the use of deflection-based nondestructive evaluation devices and a number of models to estimate the remaining life associated with a flexible pavement. We have developed a software tool that integrates artificial neural network (ANN) technology, the functional condition of pavement, uncertainty analysis and traffic information to predict a probabilistic pavement performance curve. The ANN models predict the critical strains at the layer interfaces, using readily available data such as the best estimates of each layer thickness and surface deflections from a Falling Weight Deflectometer test. As such, the backcalculation process is eliminated. Based on the validation results from an accelerated pavement testing facility and a test track, the system seems to be robust and appears to provide reasonable results. For the covering abstract see ITRD E118503.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Situ Assessment of Stiffness of a Road Sand Embankment Variation in Calculated Pavement Performance Due to Variation in Input Data Evaluation of the Influence of Asphalt Concrete Pavement Discontinuities on Falling Weight Deflectometer Measurements Bearing Capacity of a Flexible Pavement during the Construction Phase Non-contact Deflection Measurement at High Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1