透明聚甲基丙烯酸甲酯剂量计基数RN15®的伽马射线响应

T. Kojima, N. Haneda, S. Mitomo, H. Tachibana, R. Tanaka
{"title":"透明聚甲基丙烯酸甲酯剂量计基数RN15®的伽马射线响应","authors":"T. Kojima,&nbsp;N. Haneda,&nbsp;S. Mitomo,&nbsp;H. Tachibana,&nbsp;R. Tanaka","doi":"10.1016/0883-2889(92)90194-J","DOIUrl":null,"url":null,"abstract":"<div><p>Basic characteristics of different batches of Radix RN15® dosimeter, a commercially available undyed polymethylmethacrylate dosimeter, was studied for its application to process control of radiation sterilization. Radix has relatively small deviation of thickness, optical absorption spectrum, and optical density values before irradiation. The response curves, in terms of net optical density per unit thickness (ΔOD/mm) as a function of absorbed dose, D<sub>PMMA</sub>, are nearly linear up to 15 kGy and become sublinear at higher doses. Scattering of dose response in 5 dosimeter replicates is ± 1% (1 σ). The dose-response slope at 25 kGy while held at irradiation temperatures in the range 0–60°C, relative to those under 25°C, increases with temperature up to 40°C, the maximum point, and decreases at higher temperatures. Over the temperature range of 10–50°C, the variation with temperature of evaluated dose derived from the calibration curve at 25°C is less than 5% when using a dose rate of 6 kGy/h. At lower dose rates (e.g. 0.7 kGy/h) the irradiation temperature dependence is negligible over this temperature range. The temperature dependence at 40 kGy is less severe than that at 25 kGy. The post-irradiation stability of dose response is less than 5% for more than 100 h after 25 kGy irradiation and storage at 0–35°C. The change in optical density of unirradiated dosimeters 3 years after manufacturing is negligible when the dosimeters are stored at controlled laboratory conditions of temperature (25°C) and relative humidity (40%). The 3-year-old dosimeters by irradiation to a dose of 25 kGy show about 2% lower response than that at 25 kGy at the beginning of the 3-year period.</p></div>","PeriodicalId":14288,"journal":{"name":"International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0883-2889(92)90194-J","citationCount":"5","resultStr":"{\"title\":\"The gamma-ray response of clear polymethylmethacrylate dosimeter radix RN15®\",\"authors\":\"T. Kojima,&nbsp;N. Haneda,&nbsp;S. Mitomo,&nbsp;H. Tachibana,&nbsp;R. Tanaka\",\"doi\":\"10.1016/0883-2889(92)90194-J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Basic characteristics of different batches of Radix RN15® dosimeter, a commercially available undyed polymethylmethacrylate dosimeter, was studied for its application to process control of radiation sterilization. Radix has relatively small deviation of thickness, optical absorption spectrum, and optical density values before irradiation. The response curves, in terms of net optical density per unit thickness (ΔOD/mm) as a function of absorbed dose, D<sub>PMMA</sub>, are nearly linear up to 15 kGy and become sublinear at higher doses. Scattering of dose response in 5 dosimeter replicates is ± 1% (1 σ). The dose-response slope at 25 kGy while held at irradiation temperatures in the range 0–60°C, relative to those under 25°C, increases with temperature up to 40°C, the maximum point, and decreases at higher temperatures. Over the temperature range of 10–50°C, the variation with temperature of evaluated dose derived from the calibration curve at 25°C is less than 5% when using a dose rate of 6 kGy/h. At lower dose rates (e.g. 0.7 kGy/h) the irradiation temperature dependence is negligible over this temperature range. The temperature dependence at 40 kGy is less severe than that at 25 kGy. The post-irradiation stability of dose response is less than 5% for more than 100 h after 25 kGy irradiation and storage at 0–35°C. The change in optical density of unirradiated dosimeters 3 years after manufacturing is negligible when the dosimeters are stored at controlled laboratory conditions of temperature (25°C) and relative humidity (40%). The 3-year-old dosimeters by irradiation to a dose of 25 kGy show about 2% lower response than that at 25 kGy at the beginning of the 3-year period.</p></div>\",\"PeriodicalId\":14288,\"journal\":{\"name\":\"International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0883-2889(92)90194-J\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/088328899290194J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/088328899290194J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了市售无染色聚甲基丙烯酸甲酯剂量计Radix RN15®不同批次剂量计的基本特性,并对其在辐射灭菌过程控制中的应用进行了研究。辐照前基材的厚度、光吸收光谱和光密度值偏差较小。响应曲线以单位厚度净光密度(ΔOD/mm)作为吸收剂量(DPMMA)的函数表示,在15 kGy以下接近线性,在较高剂量下变为亚线性。5个剂量计重复的剂量效应散射为±1% (1 σ)。在0-60°C辐照温度下,相对于低于25°C的辐照温度,在25 kGy时的剂量响应斜率随着温度的升高而增加,直至最大值40°C,在更高的温度下下降。在10-50°C的温度范围内,当使用6 kGy/h的剂量率时,从25°C的校准曲线得出的评估剂量随温度的变化小于5%。在较低的剂量率下(如0.7千戈瑞/小时),辐照温度依赖性在此温度范围内可以忽略不计。40 kGy时的温度依赖性比25 kGy时小。辐照25 kGy, 0-35℃贮存100 h以上,剂量反应的辐照后稳定性小于5%。当剂量计储存在受控的实验室温度(25°C)和相对湿度(40%)条件下时,制造3年后未辐照剂量计的光密度变化可以忽略不计。经25千戈瑞剂量照射的3年剂量计显示,在3年期间开始时的应答比25千戈瑞低约2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The gamma-ray response of clear polymethylmethacrylate dosimeter radix RN15®

Basic characteristics of different batches of Radix RN15® dosimeter, a commercially available undyed polymethylmethacrylate dosimeter, was studied for its application to process control of radiation sterilization. Radix has relatively small deviation of thickness, optical absorption spectrum, and optical density values before irradiation. The response curves, in terms of net optical density per unit thickness (ΔOD/mm) as a function of absorbed dose, DPMMA, are nearly linear up to 15 kGy and become sublinear at higher doses. Scattering of dose response in 5 dosimeter replicates is ± 1% (1 σ). The dose-response slope at 25 kGy while held at irradiation temperatures in the range 0–60°C, relative to those under 25°C, increases with temperature up to 40°C, the maximum point, and decreases at higher temperatures. Over the temperature range of 10–50°C, the variation with temperature of evaluated dose derived from the calibration curve at 25°C is less than 5% when using a dose rate of 6 kGy/h. At lower dose rates (e.g. 0.7 kGy/h) the irradiation temperature dependence is negligible over this temperature range. The temperature dependence at 40 kGy is less severe than that at 25 kGy. The post-irradiation stability of dose response is less than 5% for more than 100 h after 25 kGy irradiation and storage at 0–35°C. The change in optical density of unirradiated dosimeters 3 years after manufacturing is negligible when the dosimeters are stored at controlled laboratory conditions of temperature (25°C) and relative humidity (40%). The 3-year-old dosimeters by irradiation to a dose of 25 kGy show about 2% lower response than that at 25 kGy at the beginning of the 3-year period.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Preparation of [131I]lipiodol as a hepatoma therapeutic agent Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89 A universal water target loading system with direct in-target liquid level sensing Response of soda glass detectors to 238U and 56Fe ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1