A. Chetverikova, O. N. Kanygina, Gulzhazira Zh. Alpysbaeva, A. A. Yudin, Saniya S. Sokabayeva
{"title":"红外光谱学是一种测定天然粘土对微波影响的结构反应的方法。","authors":"A. Chetverikova, O. N. Kanygina, Gulzhazira Zh. Alpysbaeva, A. A. Yudin, Saniya S. Sokabayeva","doi":"10.17308/kcmf.2019.21/1155","DOIUrl":null,"url":null,"abstract":"Методом ИК-спектроскопии изучены структурные отклики частиц монтмориллонитовой и каолинитовой глин месторождений Оренбургской области на СВЧ-воздействие. Обработку проб в течение 10 минут проводили в поле магнетрона мощностью 750 Вт в воздушной и влажной средах. Спектры получены с помощью ИК-Фурье спектрометра в диапазоне длин волн 4000–400 cм-1. Установлено, что в монтмориллонитовой глине количество доминирующих связей в тетраэдре SiO4 снижается в 1.5 раза при обработке в сухом воздухе и в 1.8 раза – во влажном. В глине, содержащей каолинит, все типы связей активно разрушаются под воздействием СВЧ-поля. \n \n \nИСТОЧНИК ФИНАНСИРОВАНИЯРабота выполнена при финансовой поддержке РФФИ и правительства Оренбургской области в рамках научного проекта № 19-43-560001 р_а «Физико-химические принципы процессов СВЧ-консолидации каолинитов». \n \n \n \nREFERENCES \n \nDomashevskaya, E. P., Builov, N. S., Lukin, A. N. Sitnikov A. V. IR spectroscopic study of interatomic interaction in [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 multilayer nanostructures with metal-containing composite layers. Neorganicheskie materialy [Inorganic Materials], 2018, v. 54(9), pp. 140−146 https://doi.org/10.1134/S002016851802005X \nChetverikova, A. G., Maryakhina V. S. Studies of polymineral clay containing three-layer aluminosilica tes by physical methods. Vestnik Orenburgskogo gosudar stvennogo universiteta, 2015, no. 1, pp. 250−255. (in Russ.) \nChetverikova A. G., Filyak M. M., Kanygina O. N. Evolution of phase morphology in dispersed clay systems under the microwave irradiation. Ceramica, 2018, v. 64(371), pp. 367−372. https://doi.org/10.1590/0366-69132018643712354 \nFilyak M. M., Chetverikova A. G., Kanygina O. N., Bagdasaryan L. S. Fractal formalism as applied to the analysis of the microwave modifi cation of disperse systems. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(4), pp. 578−585. URL: https://journals.vsu.ru/kcmf/article/view/168/94 (in Russ.) \nKanygina O. N., Filyak M. M., Chetverikova A. G. Microwave-Induced Phase Transformations of Natural Clay in Air and Humid Media. Neorganicheskie materially [Inorganic Materials], 2018, v. 54(9), pp. 904–909. https://doi.org/10.1134/S0020168518090042 \nYavna V. A., Kasprzhitskii A. S., Lazorenko G. I., Kochur A. G. Study of IR spectra of a polymineral natural association of phyllosilicate minerals. Optics and Spectroscopy, 2015, v. 118(4), pp. 526−536. https://doi.org/10.7868/S0030403415040224 \nChetverikova A. G., Kanygina O. N., Filyak M. M., Savinkova E. S. Physical optics methods of recording weak structural responses of dispersed clay systems to the effect of microwave radiation. Measurement Techniques, 2018, v. 60(1)1, pp. 1109−1115. https://doi.org/10.1007/s11018-018-1326-4 \nStevenson C. M., Gurnick M. Structural collapse in kaolinite, montmorillonite and illite clay and its role in the ceramic rehydroxylation dating of low-fi red earthenware. Journal of Archaeological Science, 2016, v. 69, pp. 54−63. https://doi.org/10.1016/j.jas.2016.03.004 \nDe Oliveira C. I. R., Rocha M. C. G., Da Silva A. L. N., Bertolino L. C. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Ceramica, 2016, vol. 62, Iss. 363, pp. 272−277. https://doi.org/10.1590/0366-69132016623631970 \nPlyusnina, I. I. Infrakrasnye spektry mineralov [Infrared spectra of minerals]. Moscow, Moscow University Publ., 1976, 190 p. (in Russ.) \nISO 11464:2006 Soil quality – Pretreatment of samples for physico-chemical analysis, ISO STANDARD, 2006, 11 p. \nŠaponjić A., Šaponjić Đ., Nikolić V, Milošević M., Marinović-Cincović M., Gyoshev S., Vuković M., Kokunešoski M. Iron (III) oxide fabrication from natural clay with reference to phase transformation g- →a-Fe2O3 // Science of Sintering, 2017, v. 49(2), pp. 197–205. https://doi.org/10.2298/SOS1702197S \nKool A., Thakur P., Bagchi B., Hoque N.A., Das S. Mechanical, dielectric and photoluminescence properties of alumina-mullite composite derived from natural Ganges clay. Applied Clay Science, v. 114, 2015, pp. 349−358. https://doi.org/10.1016/j.clay.2015.06.021 \nStack K. M., Milliken R. E. Modeling near-infrared refl ectance spectra of clay and sulfate mixtures and implications for Mars. Icarus, v. 250, 2015, pp. 332−356. https://doi.org/10.1016/j.icarus.2014.12.009 \nAnadгo P., Pajolli I. L. R., Hildebrando E. A., Wiebeck H. Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay. Advanced Powder Technology, 2014, v. 25(3), pp. 926−932. https://doi.org/10.1016/j.apt.2014.01.010 \nLazorenko G. I., Kasprzhitskii A. S., Yavna V. A. Application of IR spectroscope to determine mechanical properties of polycrystalline materials based on layered aluminosilicate . Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2014, vol. 16, no. 4, pp. 479−485. URL: http://www.kcmf. vsu.ru/resources/t_16_4_2014_011.pdf (in Russ.) \n","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ КАК МЕТОД ОПРЕДЕЛЕНИЯ СТРУКТУРНЫХ ОТКЛИКОВ ПРИРОДНЫХ ГЛИН НА СВЧ-ВОЗДЕЙСТВИЕ\",\"authors\":\"A. Chetverikova, O. N. Kanygina, Gulzhazira Zh. Alpysbaeva, A. A. Yudin, Saniya S. Sokabayeva\",\"doi\":\"10.17308/kcmf.2019.21/1155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Методом ИК-спектроскопии изучены структурные отклики частиц монтмориллонитовой и каолинитовой глин месторождений Оренбургской области на СВЧ-воздействие. Обработку проб в течение 10 минут проводили в поле магнетрона мощностью 750 Вт в воздушной и влажной средах. Спектры получены с помощью ИК-Фурье спектрометра в диапазоне длин волн 4000–400 cм-1. Установлено, что в монтмориллонитовой глине количество доминирующих связей в тетраэдре SiO4 снижается в 1.5 раза при обработке в сухом воздухе и в 1.8 раза – во влажном. В глине, содержащей каолинит, все типы связей активно разрушаются под воздействием СВЧ-поля. \\n \\n \\nИСТОЧНИК ФИНАНСИРОВАНИЯРабота выполнена при финансовой поддержке РФФИ и правительства Оренбургской области в рамках научного проекта № 19-43-560001 р_а «Физико-химические принципы процессов СВЧ-консолидации каолинитов». \\n \\n \\n \\nREFERENCES \\n \\nDomashevskaya, E. P., Builov, N. S., Lukin, A. N. Sitnikov A. V. IR spectroscopic study of interatomic interaction in [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 multilayer nanostructures with metal-containing composite layers. Neorganicheskie materialy [Inorganic Materials], 2018, v. 54(9), pp. 140−146 https://doi.org/10.1134/S002016851802005X \\nChetverikova, A. G., Maryakhina V. S. Studies of polymineral clay containing three-layer aluminosilica tes by physical methods. Vestnik Orenburgskogo gosudar stvennogo universiteta, 2015, no. 1, pp. 250−255. (in Russ.) \\nChetverikova A. G., Filyak M. M., Kanygina O. N. Evolution of phase morphology in dispersed clay systems under the microwave irradiation. Ceramica, 2018, v. 64(371), pp. 367−372. https://doi.org/10.1590/0366-69132018643712354 \\nFilyak M. M., Chetverikova A. G., Kanygina O. N., Bagdasaryan L. S. Fractal formalism as applied to the analysis of the microwave modifi cation of disperse systems. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(4), pp. 578−585. URL: https://journals.vsu.ru/kcmf/article/view/168/94 (in Russ.) \\nKanygina O. N., Filyak M. M., Chetverikova A. G. Microwave-Induced Phase Transformations of Natural Clay in Air and Humid Media. Neorganicheskie materially [Inorganic Materials], 2018, v. 54(9), pp. 904–909. https://doi.org/10.1134/S0020168518090042 \\nYavna V. A., Kasprzhitskii A. S., Lazorenko G. I., Kochur A. G. Study of IR spectra of a polymineral natural association of phyllosilicate minerals. Optics and Spectroscopy, 2015, v. 118(4), pp. 526−536. https://doi.org/10.7868/S0030403415040224 \\nChetverikova A. G., Kanygina O. N., Filyak M. M., Savinkova E. S. Physical optics methods of recording weak structural responses of dispersed clay systems to the effect of microwave radiation. Measurement Techniques, 2018, v. 60(1)1, pp. 1109−1115. https://doi.org/10.1007/s11018-018-1326-4 \\nStevenson C. M., Gurnick M. Structural collapse in kaolinite, montmorillonite and illite clay and its role in the ceramic rehydroxylation dating of low-fi red earthenware. Journal of Archaeological Science, 2016, v. 69, pp. 54−63. https://doi.org/10.1016/j.jas.2016.03.004 \\nDe Oliveira C. I. R., Rocha M. C. G., Da Silva A. L. N., Bertolino L. C. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Ceramica, 2016, vol. 62, Iss. 363, pp. 272−277. https://doi.org/10.1590/0366-69132016623631970 \\nPlyusnina, I. I. Infrakrasnye spektry mineralov [Infrared spectra of minerals]. Moscow, Moscow University Publ., 1976, 190 p. (in Russ.) \\nISO 11464:2006 Soil quality – Pretreatment of samples for physico-chemical analysis, ISO STANDARD, 2006, 11 p. \\nŠaponjić A., Šaponjić Đ., Nikolić V, Milošević M., Marinović-Cincović M., Gyoshev S., Vuković M., Kokunešoski M. Iron (III) oxide fabrication from natural clay with reference to phase transformation g- →a-Fe2O3 // Science of Sintering, 2017, v. 49(2), pp. 197–205. https://doi.org/10.2298/SOS1702197S \\nKool A., Thakur P., Bagchi B., Hoque N.A., Das S. Mechanical, dielectric and photoluminescence properties of alumina-mullite composite derived from natural Ganges clay. Applied Clay Science, v. 114, 2015, pp. 349−358. https://doi.org/10.1016/j.clay.2015.06.021 \\nStack K. M., Milliken R. E. Modeling near-infrared refl ectance spectra of clay and sulfate mixtures and implications for Mars. Icarus, v. 250, 2015, pp. 332−356. https://doi.org/10.1016/j.icarus.2014.12.009 \\nAnadгo P., Pajolli I. L. R., Hildebrando E. A., Wiebeck H. Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay. Advanced Powder Technology, 2014, v. 25(3), pp. 926−932. https://doi.org/10.1016/j.apt.2014.01.010 \\nLazorenko G. I., Kasprzhitskii A. S., Yavna V. A. Application of IR spectroscope to determine mechanical properties of polycrystalline materials based on layered aluminosilicate . Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2014, vol. 16, no. 4, pp. 479−485. URL: http://www.kcmf. vsu.ru/resources/t_16_4_2014_011.pdf (in Russ.) \\n\",\"PeriodicalId\":17879,\"journal\":{\"name\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17308/kcmf.2019.21/1155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/1155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
红外光谱学研究了奥伦堡油田蒙特莫里洛和高岭土颗粒对微波影响的结构反应。在10分钟内,在空气和潮湿的环境中,磁控管场的功率为750瓦。光谱是由红外傅里叶光谱仪在4000 - 400 cm -1波长范围内产生的。在montmorilonite粘土中,SiO4四面体中占主导地位的键数在干燥空气中减少1.5倍,在潮湿中减少1.8倍。在含有高岭土的粘土中,所有类型的连接在微波场的影响下都被积极破坏。финансированияработ来源履行РФФИ和政府的财政支持下在奥伦堡地区进行科学项目№19 - 43 560001р_а“理化微波整顿каолинит过程”的原则。路克,路克,路克,路克,路克,路克,路克,路克,路克,路克,路克,路克,路克,路克,路克,路克,路克,路克。Neorganicheskie materialy (Inorganic材料),2018年,v . 54 (9), pp 140−146 https://doi.org/10.1134/S002016851802005X Chetverikova a G,粘土Maryakhina v . s . Studies of polymineral containing three -层aluminosilica tes by physical methods。Vestnik Orenburgskogo gosudar大学,2015年,no。1pp 250 255(in Russ。)奇特维里科娃A. G, Filyak M. M, Kanygina O. n。Ceramica, 2018, v64 (371), pp, 367 372。https://doi.org/10.1590/0366-69132018643712354 Filyak M M Chetverikova a . G。,Bagdasaryan Kanygina o . N。l . s . Fractal formalism as applied to the analysis of the微波modifi cation of disperse systems。2016年,v18 (4), pp, 578 585。URL: https://journals.vsu.ru/kcmf/article/view/168/94 (in Russ。)Kanygina o . N、Filyak M M。Chetverikova a . g .微波- Induced阶段Transformations of Natural粘土in Air and Humid Media。新组织的物质,2018年,v54 (9), pp, 904 - 909。https://doi.org/10.1134/S0020168518090042 Yavna v . A ., Kasprzhitskii Lazorenko g . I . S。A, Kochur g研究IR圣何塞of A polymineral natural association of phyllosilicate minerals。Optics和Spectroscopy, 2015年,v118 (4), pp, 526 536。https://doi.org/10.7868/S0030403415040224 Chetverikova a . G。Kanygina o . N、Filyak M M。Savinkova e . s .物理光学methods of recording weak结构性粘土responses of dispersed systems to the effect of微波radiation。娱乐技术,2018,v60 (1)1, pp, 1109 1115。https://doi.org/10.1007/s11018-018-1326-4 Stevenson c . M, Gurnick M .结构性崩溃in kaolinite montmorillonite and粘土illite and its = in the v * rehydroxylation dating of red earthenware low - fi。《武器科学杂志》,2016年,v69, pp, 54 - 63。https://doi.org/10.1016/j.jas.2016.03.004 De Oliveira c . Rocha, i R。m . c . G . Da Silva a . l . N。Bertolino l . c . Characterization of bentonite clays from Cubati Paraiba ((of Brazil)。Ceramica, 2016年,vol, 62, Iss, 363, pp, 272 277。https://doi.org/10.1590/0366-69132016623631970 Plyusnina, i i Infrakrasnye spektry mineralov[红外圣何塞of minerals)。莫斯科大学出版社1976年,190个p- Pretreatment ISO 11464:2006 Soil quality of samples for physico 2006 - chemical analysis, ISO标准11 p .ŠaponjićA,ŠaponjićĐ。Nikoli av, Milo evi M, Marinovi M, Gyoshev M, Vukovi M, Vukovi M,https://doi.org/10.2298/SOS1702197S Kool A . Thakur P, Bagchi Hoque: A, B, Das s .机械,(dielectric and photoluminescence of氧化铝有限mullite综合粘土derived from natural恒河。应用Clay科学,v114, 2015, pp, 349 - 358。https://doi.org/10.1016/j.clay.2015.06.021 Stack k M, Milliken r . e . Modeling near -红外refl ectance圣何塞of粘土and sulfate混合物可能and implications for Mars)。Icarus, v250, 2015, pp, 332 356。https://doi.org/10.1016/j.icarus.2014.12.009 Anadгo P。Pajolli一世l R。Hildebrando e . A . Wiebeck h . Preparation and characterization of carbon / montmorillonite composite and nanocomposites from乐队bleaching市场montmorillonite克莱。先进Powder技术,2014年,v25 (3), pp, 926 932。https://doi.org/10.1016/j.apt.2014.01.010 Lazorenko g . I、Kasprzhitskii a . S。Yavna v . a .应用程序of IR spectroscope to determine(机械of polycrystalline材料基于on layered aluminosilicate。2014年,16岁,no。4 pp 479 485URL: http://www.kcmf。vsu.ru/resources/ t_414_011 pdf (Russ)。
ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ КАК МЕТОД ОПРЕДЕЛЕНИЯ СТРУКТУРНЫХ ОТКЛИКОВ ПРИРОДНЫХ ГЛИН НА СВЧ-ВОЗДЕЙСТВИЕ
Методом ИК-спектроскопии изучены структурные отклики частиц монтмориллонитовой и каолинитовой глин месторождений Оренбургской области на СВЧ-воздействие. Обработку проб в течение 10 минут проводили в поле магнетрона мощностью 750 Вт в воздушной и влажной средах. Спектры получены с помощью ИК-Фурье спектрометра в диапазоне длин волн 4000–400 cм-1. Установлено, что в монтмориллонитовой глине количество доминирующих связей в тетраэдре SiO4 снижается в 1.5 раза при обработке в сухом воздухе и в 1.8 раза – во влажном. В глине, содержащей каолинит, все типы связей активно разрушаются под воздействием СВЧ-поля.
ИСТОЧНИК ФИНАНСИРОВАНИЯРабота выполнена при финансовой поддержке РФФИ и правительства Оренбургской области в рамках научного проекта № 19-43-560001 р_а «Физико-химические принципы процессов СВЧ-консолидации каолинитов».
REFERENCES
Domashevskaya, E. P., Builov, N. S., Lukin, A. N. Sitnikov A. V. IR spectroscopic study of interatomic interaction in [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 multilayer nanostructures with metal-containing composite layers. Neorganicheskie materialy [Inorganic Materials], 2018, v. 54(9), pp. 140−146 https://doi.org/10.1134/S002016851802005X
Chetverikova, A. G., Maryakhina V. S. Studies of polymineral clay containing three-layer aluminosilica tes by physical methods. Vestnik Orenburgskogo gosudar stvennogo universiteta, 2015, no. 1, pp. 250−255. (in Russ.)
Chetverikova A. G., Filyak M. M., Kanygina O. N. Evolution of phase morphology in dispersed clay systems under the microwave irradiation. Ceramica, 2018, v. 64(371), pp. 367−372. https://doi.org/10.1590/0366-69132018643712354
Filyak M. M., Chetverikova A. G., Kanygina O. N., Bagdasaryan L. S. Fractal formalism as applied to the analysis of the microwave modifi cation of disperse systems. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(4), pp. 578−585. URL: https://journals.vsu.ru/kcmf/article/view/168/94 (in Russ.)
Kanygina O. N., Filyak M. M., Chetverikova A. G. Microwave-Induced Phase Transformations of Natural Clay in Air and Humid Media. Neorganicheskie materially [Inorganic Materials], 2018, v. 54(9), pp. 904–909. https://doi.org/10.1134/S0020168518090042
Yavna V. A., Kasprzhitskii A. S., Lazorenko G. I., Kochur A. G. Study of IR spectra of a polymineral natural association of phyllosilicate minerals. Optics and Spectroscopy, 2015, v. 118(4), pp. 526−536. https://doi.org/10.7868/S0030403415040224
Chetverikova A. G., Kanygina O. N., Filyak M. M., Savinkova E. S. Physical optics methods of recording weak structural responses of dispersed clay systems to the effect of microwave radiation. Measurement Techniques, 2018, v. 60(1)1, pp. 1109−1115. https://doi.org/10.1007/s11018-018-1326-4
Stevenson C. M., Gurnick M. Structural collapse in kaolinite, montmorillonite and illite clay and its role in the ceramic rehydroxylation dating of low-fi red earthenware. Journal of Archaeological Science, 2016, v. 69, pp. 54−63. https://doi.org/10.1016/j.jas.2016.03.004
De Oliveira C. I. R., Rocha M. C. G., Da Silva A. L. N., Bertolino L. C. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Ceramica, 2016, vol. 62, Iss. 363, pp. 272−277. https://doi.org/10.1590/0366-69132016623631970
Plyusnina, I. I. Infrakrasnye spektry mineralov [Infrared spectra of minerals]. Moscow, Moscow University Publ., 1976, 190 p. (in Russ.)
ISO 11464:2006 Soil quality – Pretreatment of samples for physico-chemical analysis, ISO STANDARD, 2006, 11 p.
Šaponjić A., Šaponjić Đ., Nikolić V, Milošević M., Marinović-Cincović M., Gyoshev S., Vuković M., Kokunešoski M. Iron (III) oxide fabrication from natural clay with reference to phase transformation g- →a-Fe2O3 // Science of Sintering, 2017, v. 49(2), pp. 197–205. https://doi.org/10.2298/SOS1702197S
Kool A., Thakur P., Bagchi B., Hoque N.A., Das S. Mechanical, dielectric and photoluminescence properties of alumina-mullite composite derived from natural Ganges clay. Applied Clay Science, v. 114, 2015, pp. 349−358. https://doi.org/10.1016/j.clay.2015.06.021
Stack K. M., Milliken R. E. Modeling near-infrared refl ectance spectra of clay and sulfate mixtures and implications for Mars. Icarus, v. 250, 2015, pp. 332−356. https://doi.org/10.1016/j.icarus.2014.12.009
Anadгo P., Pajolli I. L. R., Hildebrando E. A., Wiebeck H. Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay. Advanced Powder Technology, 2014, v. 25(3), pp. 926−932. https://doi.org/10.1016/j.apt.2014.01.010
Lazorenko G. I., Kasprzhitskii A. S., Yavna V. A. Application of IR spectroscope to determine mechanical properties of polycrystalline materials based on layered aluminosilicate . Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2014, vol. 16, no. 4, pp. 479−485. URL: http://www.kcmf. vsu.ru/resources/t_16_4_2014_011.pdf (in Russ.)