使用有限状态机逻辑的自适应学习

M. Waterman, D. C. Frezzo, Michael X. Wang
{"title":"使用有限状态机逻辑的自适应学习","authors":"M. Waterman, D. C. Frezzo, Michael X. Wang","doi":"10.1145/3386527.3406720","DOIUrl":null,"url":null,"abstract":"We demonstrate the feasibility of Finite State Machine (FSM) logic to design adaptively scaffolded activities, presenting early work integrating adaptive learning into a learning tool in widespread use globally. We describe how integrating FSM logic with existing assessment architecture enables us to extend from direct measurement to scaffolding and feedback interventions on a spectrum of timescales from 1-second to several hours. Four prototypes are shared, demonstrating how this FSM logic affords design across differing learning contexts. Implications for design of efficiency and empowerment at scale, potential for content co-creation, and transformation of learning are discussed.","PeriodicalId":20608,"journal":{"name":"Proceedings of the Seventh ACM Conference on Learning @ Scale","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Learning using Finite State Machine Logic\",\"authors\":\"M. Waterman, D. C. Frezzo, Michael X. Wang\",\"doi\":\"10.1145/3386527.3406720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the feasibility of Finite State Machine (FSM) logic to design adaptively scaffolded activities, presenting early work integrating adaptive learning into a learning tool in widespread use globally. We describe how integrating FSM logic with existing assessment architecture enables us to extend from direct measurement to scaffolding and feedback interventions on a spectrum of timescales from 1-second to several hours. Four prototypes are shared, demonstrating how this FSM logic affords design across differing learning contexts. Implications for design of efficiency and empowerment at scale, potential for content co-creation, and transformation of learning are discussed.\",\"PeriodicalId\":20608,\"journal\":{\"name\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386527.3406720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386527.3406720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了有限状态机(FSM)逻辑设计自适应脚手架活动的可行性,展示了将自适应学习集成到全球广泛使用的学习工具中的早期工作。我们描述了如何将FSM逻辑与现有的评估体系结构集成,使我们能够在从1秒到几个小时的时间尺度范围内从直接测量扩展到脚手架和反馈干预。分享了四个原型,展示了FSM逻辑如何在不同的学习环境中提供设计。本文讨论了效率设计和大规模授权的含义、内容共同创造的潜力以及学习的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Learning using Finite State Machine Logic
We demonstrate the feasibility of Finite State Machine (FSM) logic to design adaptively scaffolded activities, presenting early work integrating adaptive learning into a learning tool in widespread use globally. We describe how integrating FSM logic with existing assessment architecture enables us to extend from direct measurement to scaffolding and feedback interventions on a spectrum of timescales from 1-second to several hours. Four prototypes are shared, demonstrating how this FSM logic affords design across differing learning contexts. Implications for design of efficiency and empowerment at scale, potential for content co-creation, and transformation of learning are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trust, Sustainability and [email protected] L@S'22: Ninth ACM Conference on Learning @ Scale, New York City, NY, USA, June 1 - 3, 2022 L@S'21: Eighth ACM Conference on Learning @ Scale, Virtual Event, Germany, June 22-25, 2021 Leveraging Book Indexes for Automatic Extraction of Concepts in MOOCs Evaluating Bayesian Knowledge Tracing for Estimating Learner Proficiency and Guiding Learner Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1