基于多摄像机融合的人体跌倒检测框架

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Experimental & Theoretical Artificial Intelligence Pub Date : 2021-07-15 DOI:10.1080/0952813X.2021.1938696
Shabnam Ezatzadeh, M. Keyvanpour, S. V. Shojaedini
{"title":"基于多摄像机融合的人体跌倒检测框架","authors":"Shabnam Ezatzadeh, M. Keyvanpour, S. V. Shojaedini","doi":"10.1080/0952813X.2021.1938696","DOIUrl":null,"url":null,"abstract":"ABSTRACT A sudden fall accident is the main concern for the elderly and disabled people. Automatic detection of the falls from video sequences is an assistive technology for surveillance systems. In this study, a three-stage framework was presented and implemented based on the combination of the data from multiple cameras to address the challenges of occlusion and visibility. In the first stage, the number of used cameras was specified. In the second stage, each camera was decided locally based on its data about the fall incident. In the third and final stage, the aggregation function was used to combine the single camera’s decision considering the coverage rate coefficient of the used cameras. Experiments on the multiple-camera fall dataset demonstrated that our method is comparable to other state-of-the-art methods.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"34 1","pages":"905 - 924"},"PeriodicalIF":1.7000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A human fall detection framework based on multi-camera fusion\",\"authors\":\"Shabnam Ezatzadeh, M. Keyvanpour, S. V. Shojaedini\",\"doi\":\"10.1080/0952813X.2021.1938696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A sudden fall accident is the main concern for the elderly and disabled people. Automatic detection of the falls from video sequences is an assistive technology for surveillance systems. In this study, a three-stage framework was presented and implemented based on the combination of the data from multiple cameras to address the challenges of occlusion and visibility. In the first stage, the number of used cameras was specified. In the second stage, each camera was decided locally based on its data about the fall incident. In the third and final stage, the aggregation function was used to combine the single camera’s decision considering the coverage rate coefficient of the used cameras. Experiments on the multiple-camera fall dataset demonstrated that our method is comparable to other state-of-the-art methods.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"34 1\",\"pages\":\"905 - 924\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2021.1938696\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1938696","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

突发性跌倒事故是老年人和残疾人最关心的问题。从视频序列中自动检测跌倒是监控系统的一项辅助技术。在本研究中,提出并实施了一个基于多相机数据组合的三阶段框架,以解决遮挡和可见性的挑战。在第一阶段,指定使用相机的数量。在第二阶段,每个摄像头都是根据其关于坠落事件的数据在当地决定的。在第三阶段,也是最后一个阶段,使用聚合函数将单个相机的决策结合使用的相机的覆盖率系数。在多相机跌落数据集上的实验表明,我们的方法与其他最先进的方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A human fall detection framework based on multi-camera fusion
ABSTRACT A sudden fall accident is the main concern for the elderly and disabled people. Automatic detection of the falls from video sequences is an assistive technology for surveillance systems. In this study, a three-stage framework was presented and implemented based on the combination of the data from multiple cameras to address the challenges of occlusion and visibility. In the first stage, the number of used cameras was specified. In the second stage, each camera was decided locally based on its data about the fall incident. In the third and final stage, the aggregation function was used to combine the single camera’s decision considering the coverage rate coefficient of the used cameras. Experiments on the multiple-camera fall dataset demonstrated that our method is comparable to other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
期刊最新文献
Occlusive target recognition method of sorting robot based on anchor-free detection network An effectual underwater image enhancement framework using adaptive trans-resunet ++ with attention mechanism An experimental study of sentiment classification using deep-based models with various word embedding techniques Sign language video to text conversion via optimised LSTM with improved motion estimation An efficient safest route prediction-based route discovery mechanism for drivers using improved golden tortoise beetle optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1