{"title":"热化学反应颗粒流中团聚的计算框架","authors":"T. Zohdi","doi":"10.1098/rspa.2004.1277","DOIUrl":null,"url":null,"abstract":"A computational framework is developed which couples a series of models, each describing vastly different physical events, in order to characterize particle growth (agglomeration) in thermochemically reacting granular flows. The modelling is purposely simplified to expose the dominant mechanisms which control agglomeration. The overall system is comprised of relatively simple coupled submodels describing impact, heat production, bonding and fragmentation, each of which can be replaced by more elaborate descriptions, if and when they are available. Inverse problems, solved with a genetic algorithm, are then constructed to ascertain system parameters which maximize agglomeration likelihood within a range of admissible data.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"1 1","pages":"3421 - 3445"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"A computational framework for agglomeration in thermochemically reacting granular flows\",\"authors\":\"T. Zohdi\",\"doi\":\"10.1098/rspa.2004.1277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational framework is developed which couples a series of models, each describing vastly different physical events, in order to characterize particle growth (agglomeration) in thermochemically reacting granular flows. The modelling is purposely simplified to expose the dominant mechanisms which control agglomeration. The overall system is comprised of relatively simple coupled submodels describing impact, heat production, bonding and fragmentation, each of which can be replaced by more elaborate descriptions, if and when they are available. Inverse problems, solved with a genetic algorithm, are then constructed to ascertain system parameters which maximize agglomeration likelihood within a range of admissible data.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"1 1\",\"pages\":\"3421 - 3445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A computational framework for agglomeration in thermochemically reacting granular flows
A computational framework is developed which couples a series of models, each describing vastly different physical events, in order to characterize particle growth (agglomeration) in thermochemically reacting granular flows. The modelling is purposely simplified to expose the dominant mechanisms which control agglomeration. The overall system is comprised of relatively simple coupled submodels describing impact, heat production, bonding and fragmentation, each of which can be replaced by more elaborate descriptions, if and when they are available. Inverse problems, solved with a genetic algorithm, are then constructed to ascertain system parameters which maximize agglomeration likelihood within a range of admissible data.
期刊介绍:
Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.