区间多目标线性规划模型的有效解

Q3 Decision Sciences Yugoslav Journal of Operations Research Pub Date : 2021-01-01 DOI:10.2298/yjor190817034b
A. Batamiz, M. Allahdadi
{"title":"区间多目标线性规划模型的有效解","authors":"A. Batamiz, M. Allahdadi","doi":"10.2298/yjor190817034b","DOIUrl":null,"url":null,"abstract":"The aim of our paper is to obtain efficient solutions to the interval multi-objective linear programming (IMOLP) models. In this paper, we propose a new method to determine the efficient solutions in the IMOLP models by using the expected value and variance operators (EVV operators). First, we define concepts of the expected value, variance, and uncertainty distributions, and present some properties of the EVV operators. Then, we introduce the IMOLP model under these operators. An IMOLP model consist of separate ILPs, but using the EVV operators and the uncertainty distributions, it can be converted into the interval linear programming (ILP) models under the EVV operators (EVV-ILP model). We show that optimal solutions of the EEV-ILP model are the efficient solutions of IMOLP models with uncertainty variables. The proposed method, which is called EVV, is not hard to solve. Finally, Monte Carlo simulation is used to show its performance assessment.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding efficient solutions in the interval multi-objective linear programming models\",\"authors\":\"A. Batamiz, M. Allahdadi\",\"doi\":\"10.2298/yjor190817034b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of our paper is to obtain efficient solutions to the interval multi-objective linear programming (IMOLP) models. In this paper, we propose a new method to determine the efficient solutions in the IMOLP models by using the expected value and variance operators (EVV operators). First, we define concepts of the expected value, variance, and uncertainty distributions, and present some properties of the EVV operators. Then, we introduce the IMOLP model under these operators. An IMOLP model consist of separate ILPs, but using the EVV operators and the uncertainty distributions, it can be converted into the interval linear programming (ILP) models under the EVV operators (EVV-ILP model). We show that optimal solutions of the EEV-ILP model are the efficient solutions of IMOLP models with uncertainty variables. The proposed method, which is called EVV, is not hard to solve. Finally, Monte Carlo simulation is used to show its performance assessment.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/yjor190817034b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/yjor190817034b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是得到区间多目标线性规划(IMOLP)模型的有效解。本文提出了一种利用期望值和方差算子(EVV算子)确定IMOLP模型有效解的新方法。首先,定义了期望值、方差和不确定性分布的概念,给出了EVV算子的一些性质。然后,我们引入了这些算子下的IMOLP模型。IMOLP模型由独立的ILP组成,但利用EVV算子和不确定性分布,可以将其转化为EVV算子下的区间线性规划(ILP)模型(EVV-ILP模型)。我们证明了EEV-ILP模型的最优解是具有不确定性变量的IMOLP模型的有效解。该方法被称为EVV,求解起来并不难。最后通过蒙特卡罗仿真对其性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding efficient solutions in the interval multi-objective linear programming models
The aim of our paper is to obtain efficient solutions to the interval multi-objective linear programming (IMOLP) models. In this paper, we propose a new method to determine the efficient solutions in the IMOLP models by using the expected value and variance operators (EVV operators). First, we define concepts of the expected value, variance, and uncertainty distributions, and present some properties of the EVV operators. Then, we introduce the IMOLP model under these operators. An IMOLP model consist of separate ILPs, but using the EVV operators and the uncertainty distributions, it can be converted into the interval linear programming (ILP) models under the EVV operators (EVV-ILP model). We show that optimal solutions of the EEV-ILP model are the efficient solutions of IMOLP models with uncertainty variables. The proposed method, which is called EVV, is not hard to solve. Finally, Monte Carlo simulation is used to show its performance assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
期刊最新文献
Metric on the space of systems behavior functions represented by fuzzy measures Team-bounded DEA efficiency scores: The case of UEFA Champions League Players Bounds on eigenvalues of real symmetric interval matrices for αBB method in global optimization A managerial approach in resource allocation models: an application in us and Canadian oil and gas companies Neutrosophic MAGDM based on critic-EDAS strategy using geometric aggregation operator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1