A. Hasanov, R. A. Hasanov, A. Huseynov, E. Agayev, R. Ahmadov
{"title":"用于测量激光辐射参数的光弹性效应特性","authors":"A. Hasanov, R. A. Hasanov, A. Huseynov, E. Agayev, R. Ahmadov","doi":"10.36027/rdeng.0420.0000159","DOIUrl":null,"url":null,"abstract":"The article discusses the photo-elastic effect features in acousto-optic processors for processing pulse signals on the time axis. The photo-elastic interaction in these devices is divided into two areas. In the first area, the input pulse duration is longer than the time of intersecting the optical beam by the elastic wave packet. This particular area is widely used in the practical applications of these processors, where it is a priori assumed that the input pulse duration is longer than the time for the elastic wave packet to intersect the optical beam.In the second area, the input pulse duration is less than the time for the optical beam to be intersected by the elastic wave packet. The objective of this work is to study the photo-elastic effect features in this area. It was established that in this area the pulse duration at the processor output is equal to the time for the optical beam to be intersected by the elastic wave packet and does not depend on the input pulse duration, which is permissible in some cases (for example, in radar pulse existence rather than its duration is recorded). It is shown that in the second area, the output pulse is formed as the sum of three terms. The first term corresponds to the elastic wave packet entering the optical beam. The second term corresponds to the elastic wave packet advancement in the optical beam aperture, and the third one keeps with the elastic wave packet leaving the aperture of the optical beam. The corresponding equations for calculating the pulse at the device output are obtained. The numerical calculations have proved the provisions and patterns established. The numerical modeling results were tested experimentally using a prototype of an acousto-optic processor with direct detection. The analysed results of theoretical and experimental studies unequivocally confirmed that the obtained formulas, formulated statements, and established provisions can be used to expand the functionality of acousto-optic processors, both with direct detection and of heterodyne type. It is shown that with a significant decrease in the input pulse duration relative to the time during which the optical beam is intersected by the elastic wave packet, the latter is converted into a scanning line and can be used to measure the geometric and energy characteristics of the quasi-coherent light.","PeriodicalId":22345,"journal":{"name":"Telecommunications and Radio Engineering","volume":"2005 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-elastic Effect Features Used for Measuring Laser Radiation Parameters\",\"authors\":\"A. Hasanov, R. A. Hasanov, A. Huseynov, E. Agayev, R. Ahmadov\",\"doi\":\"10.36027/rdeng.0420.0000159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article discusses the photo-elastic effect features in acousto-optic processors for processing pulse signals on the time axis. The photo-elastic interaction in these devices is divided into two areas. In the first area, the input pulse duration is longer than the time of intersecting the optical beam by the elastic wave packet. This particular area is widely used in the practical applications of these processors, where it is a priori assumed that the input pulse duration is longer than the time for the elastic wave packet to intersect the optical beam.In the second area, the input pulse duration is less than the time for the optical beam to be intersected by the elastic wave packet. The objective of this work is to study the photo-elastic effect features in this area. It was established that in this area the pulse duration at the processor output is equal to the time for the optical beam to be intersected by the elastic wave packet and does not depend on the input pulse duration, which is permissible in some cases (for example, in radar pulse existence rather than its duration is recorded). It is shown that in the second area, the output pulse is formed as the sum of three terms. The first term corresponds to the elastic wave packet entering the optical beam. The second term corresponds to the elastic wave packet advancement in the optical beam aperture, and the third one keeps with the elastic wave packet leaving the aperture of the optical beam. The corresponding equations for calculating the pulse at the device output are obtained. The numerical calculations have proved the provisions and patterns established. The numerical modeling results were tested experimentally using a prototype of an acousto-optic processor with direct detection. The analysed results of theoretical and experimental studies unequivocally confirmed that the obtained formulas, formulated statements, and established provisions can be used to expand the functionality of acousto-optic processors, both with direct detection and of heterodyne type. It is shown that with a significant decrease in the input pulse duration relative to the time during which the optical beam is intersected by the elastic wave packet, the latter is converted into a scanning line and can be used to measure the geometric and energy characteristics of the quasi-coherent light.\",\"PeriodicalId\":22345,\"journal\":{\"name\":\"Telecommunications and Radio Engineering\",\"volume\":\"2005 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunications and Radio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36027/rdeng.0420.0000159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunications and Radio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36027/rdeng.0420.0000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photo-elastic Effect Features Used for Measuring Laser Radiation Parameters
The article discusses the photo-elastic effect features in acousto-optic processors for processing pulse signals on the time axis. The photo-elastic interaction in these devices is divided into two areas. In the first area, the input pulse duration is longer than the time of intersecting the optical beam by the elastic wave packet. This particular area is widely used in the practical applications of these processors, where it is a priori assumed that the input pulse duration is longer than the time for the elastic wave packet to intersect the optical beam.In the second area, the input pulse duration is less than the time for the optical beam to be intersected by the elastic wave packet. The objective of this work is to study the photo-elastic effect features in this area. It was established that in this area the pulse duration at the processor output is equal to the time for the optical beam to be intersected by the elastic wave packet and does not depend on the input pulse duration, which is permissible in some cases (for example, in radar pulse existence rather than its duration is recorded). It is shown that in the second area, the output pulse is formed as the sum of three terms. The first term corresponds to the elastic wave packet entering the optical beam. The second term corresponds to the elastic wave packet advancement in the optical beam aperture, and the third one keeps with the elastic wave packet leaving the aperture of the optical beam. The corresponding equations for calculating the pulse at the device output are obtained. The numerical calculations have proved the provisions and patterns established. The numerical modeling results were tested experimentally using a prototype of an acousto-optic processor with direct detection. The analysed results of theoretical and experimental studies unequivocally confirmed that the obtained formulas, formulated statements, and established provisions can be used to expand the functionality of acousto-optic processors, both with direct detection and of heterodyne type. It is shown that with a significant decrease in the input pulse duration relative to the time during which the optical beam is intersected by the elastic wave packet, the latter is converted into a scanning line and can be used to measure the geometric and energy characteristics of the quasi-coherent light.