{"title":"汞中毒治疗的再思考:硒、乙酰半胱氨酸和硫醇螯合剂在汞中毒治疗中的作用:叙述性综述","authors":"H. Spiller, Hannah L. Hays, M. Casavant","doi":"10.1080/24734306.2020.1870077","DOIUrl":null,"url":null,"abstract":"Abstract We reevaluate the treatment of mercury poisoning, incorporating recent advances in understanding of mercury toxicity and the mercury:selenium interaction. This review focuses on: 1) the role, limitations and benefits of chelation (Unithiol, succimer and N-Acetylcysteine); 2) the role of selenium supplementation; and 3) how the different forms of mercury are impacted by use of chelation and selenium. Unithiol and succimer produce increases in urinary excretion of mercury and to a lesser degree blood and total body mercury. The primary role of N-acetylcysteine is increasing renal mercury excretion, similar to the thiol-chelators. Additional unique features of acetylcysteine include increased efflux of methylmercury from the brain, and reduced oxidative stress via increased glutathione production. The role of selenium includes: 1) restoration of selenoprotein activity, 2) protection against mitochondrial injury and DNA damage, 3) demethylation of methylmercury, 4) sequestering of mercury via Hg:Se complexes, and 5) redistribution of Hg inside organisms. Selenium may increase blood Hg, via a “sink” effect, causing a redistribution of mercury away from the brain. A combined approach for mercury poisoning treatment was developed focusing on restoration of selenoprotein function, reduction of oxidative stress and increased mercury elimination.","PeriodicalId":23139,"journal":{"name":"Toxicology communications","volume":"135 11 1","pages":"19 - 59"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rethinking treatment of mercury poisoning: the roles of selenium, acetylcysteine, and thiol chelators in the treatment of mercury poisoning: a narrative review\",\"authors\":\"H. Spiller, Hannah L. Hays, M. Casavant\",\"doi\":\"10.1080/24734306.2020.1870077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We reevaluate the treatment of mercury poisoning, incorporating recent advances in understanding of mercury toxicity and the mercury:selenium interaction. This review focuses on: 1) the role, limitations and benefits of chelation (Unithiol, succimer and N-Acetylcysteine); 2) the role of selenium supplementation; and 3) how the different forms of mercury are impacted by use of chelation and selenium. Unithiol and succimer produce increases in urinary excretion of mercury and to a lesser degree blood and total body mercury. The primary role of N-acetylcysteine is increasing renal mercury excretion, similar to the thiol-chelators. Additional unique features of acetylcysteine include increased efflux of methylmercury from the brain, and reduced oxidative stress via increased glutathione production. The role of selenium includes: 1) restoration of selenoprotein activity, 2) protection against mitochondrial injury and DNA damage, 3) demethylation of methylmercury, 4) sequestering of mercury via Hg:Se complexes, and 5) redistribution of Hg inside organisms. Selenium may increase blood Hg, via a “sink” effect, causing a redistribution of mercury away from the brain. A combined approach for mercury poisoning treatment was developed focusing on restoration of selenoprotein function, reduction of oxidative stress and increased mercury elimination.\",\"PeriodicalId\":23139,\"journal\":{\"name\":\"Toxicology communications\",\"volume\":\"135 11 1\",\"pages\":\"19 - 59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24734306.2020.1870077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24734306.2020.1870077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rethinking treatment of mercury poisoning: the roles of selenium, acetylcysteine, and thiol chelators in the treatment of mercury poisoning: a narrative review
Abstract We reevaluate the treatment of mercury poisoning, incorporating recent advances in understanding of mercury toxicity and the mercury:selenium interaction. This review focuses on: 1) the role, limitations and benefits of chelation (Unithiol, succimer and N-Acetylcysteine); 2) the role of selenium supplementation; and 3) how the different forms of mercury are impacted by use of chelation and selenium. Unithiol and succimer produce increases in urinary excretion of mercury and to a lesser degree blood and total body mercury. The primary role of N-acetylcysteine is increasing renal mercury excretion, similar to the thiol-chelators. Additional unique features of acetylcysteine include increased efflux of methylmercury from the brain, and reduced oxidative stress via increased glutathione production. The role of selenium includes: 1) restoration of selenoprotein activity, 2) protection against mitochondrial injury and DNA damage, 3) demethylation of methylmercury, 4) sequestering of mercury via Hg:Se complexes, and 5) redistribution of Hg inside organisms. Selenium may increase blood Hg, via a “sink” effect, causing a redistribution of mercury away from the brain. A combined approach for mercury poisoning treatment was developed focusing on restoration of selenoprotein function, reduction of oxidative stress and increased mercury elimination.