基于众包的可视化图表数据提取

Chengliang Chai, Guoliang Li, Ju Fan, Yuyu Luo
{"title":"基于众包的可视化图表数据提取","authors":"Chengliang Chai, Guoliang Li, Ju Fan, Yuyu Luo","doi":"10.1109/ICDE48307.2020.00177","DOIUrl":null,"url":null,"abstract":"Visualization charts are widely utilized for presenting structured data. Under many circumstances, people want to explore the data in the charts collected from various sources, such as papers and websites, so as to further analyzing the data or creating new charts. However, the existing automatic and semi-automatic approaches are not always effective due to the variety of charts. In this paper, we introduce a crowdsourcing approach that leverages human ability to extract data from visualization charts. There are several challenges. The first one is how to avoid tedious human interaction with charts and design simple crowdsourcing tasks. Second, it is challenging to evaluate worker’s quality for truth inference, because workers may not only provide inaccurate values but also misalign values to wrong data series. To address the challenges, we design an effective crowdsourcing task scheme that splits a chart into simple micro-tasks. We introduce a novel worker quality model by considering worker’s accuracy and task difficulty. We also devise an effective early-stopping mechanisms to save the cost. We have conducted experiments on a real crowdsourcing platform, and the results show that our framework outperforms state-of-the-art approaches on both cost and quality.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"1 1","pages":"1814-1817"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Crowdsourcing-based Data Extraction from Visualization Charts\",\"authors\":\"Chengliang Chai, Guoliang Li, Ju Fan, Yuyu Luo\",\"doi\":\"10.1109/ICDE48307.2020.00177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualization charts are widely utilized for presenting structured data. Under many circumstances, people want to explore the data in the charts collected from various sources, such as papers and websites, so as to further analyzing the data or creating new charts. However, the existing automatic and semi-automatic approaches are not always effective due to the variety of charts. In this paper, we introduce a crowdsourcing approach that leverages human ability to extract data from visualization charts. There are several challenges. The first one is how to avoid tedious human interaction with charts and design simple crowdsourcing tasks. Second, it is challenging to evaluate worker’s quality for truth inference, because workers may not only provide inaccurate values but also misalign values to wrong data series. To address the challenges, we design an effective crowdsourcing task scheme that splits a chart into simple micro-tasks. We introduce a novel worker quality model by considering worker’s accuracy and task difficulty. We also devise an effective early-stopping mechanisms to save the cost. We have conducted experiments on a real crowdsourcing platform, and the results show that our framework outperforms state-of-the-art approaches on both cost and quality.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"1 1\",\"pages\":\"1814-1817\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

可视化图表被广泛用于表示结构化数据。在很多情况下,人们想要探索从各种来源收集的图表中的数据,例如论文和网站,从而进一步分析数据或创建新的图表。然而,由于图表的多样性,现有的自动和半自动方法并不总是有效的。在本文中,我们介绍了一种利用人类能力从可视化图表中提取数据的众包方法。这里有几个挑战。第一个问题是如何避免与图表进行繁琐的人机交互,并设计简单的众包任务。其次,评估工作者的真值推断质量是具有挑战性的,因为工作者不仅可能提供不准确的值,而且可能将值与错误的数据序列不一致。为了应对这些挑战,我们设计了一个有效的众包任务方案,将图表分成简单的微任务。在此基础上,提出了一种考虑工人精度和任务难度的工人素质模型。我们还设计了一个有效的早期停止机制,以节省成本。我们在一个真正的众包平台上进行了实验,结果表明我们的框架在成本和质量上都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crowdsourcing-based Data Extraction from Visualization Charts
Visualization charts are widely utilized for presenting structured data. Under many circumstances, people want to explore the data in the charts collected from various sources, such as papers and websites, so as to further analyzing the data or creating new charts. However, the existing automatic and semi-automatic approaches are not always effective due to the variety of charts. In this paper, we introduce a crowdsourcing approach that leverages human ability to extract data from visualization charts. There are several challenges. The first one is how to avoid tedious human interaction with charts and design simple crowdsourcing tasks. Second, it is challenging to evaluate worker’s quality for truth inference, because workers may not only provide inaccurate values but also misalign values to wrong data series. To address the challenges, we design an effective crowdsourcing task scheme that splits a chart into simple micro-tasks. We introduce a novel worker quality model by considering worker’s accuracy and task difficulty. We also devise an effective early-stopping mechanisms to save the cost. We have conducted experiments on a real crowdsourcing platform, and the results show that our framework outperforms state-of-the-art approaches on both cost and quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach Mobility-Aware Dynamic Taxi Ridesharing Multiscale Frequent Co-movement Pattern Mining Automatic Calibration of Road Intersection Topology using Trajectories Turbine: Facebook’s Service Management Platform for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1