{"title":"绿色植物生物力学的数学模型研究","authors":"N. Uka, J. D. Olisa","doi":"10.9734/ajopacs/2019/v7i330097","DOIUrl":null,"url":null,"abstract":"This study considers the biomechanics in the stem of green plants. The process of translocation and transpiration is discussed. The coupled non-linear differential equations governing the motion of the flow were non-dimensionlized and then solved using the homotopy perturbation method. The effects of various parameters such as Schmidt number, porosity, buoyancy forces (thermal and concentration Grashof numbers) and aspect ratio embedded in the flow were examined on the concentration field. The results showed that increasing the porosity, Schmidt number, Sherwood number and aspect ratio resulted to a decrease in the concentration field whereas increase in the buoyancy forces had a positive effect on the flow by increasing its concentration and hence enhancing the growth and productivity of the plant.","PeriodicalId":8541,"journal":{"name":"Asian Journal of Physical and Chemical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Mathematical Model of the Biomechanics of Green Plants\",\"authors\":\"N. Uka, J. D. Olisa\",\"doi\":\"10.9734/ajopacs/2019/v7i330097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study considers the biomechanics in the stem of green plants. The process of translocation and transpiration is discussed. The coupled non-linear differential equations governing the motion of the flow were non-dimensionlized and then solved using the homotopy perturbation method. The effects of various parameters such as Schmidt number, porosity, buoyancy forces (thermal and concentration Grashof numbers) and aspect ratio embedded in the flow were examined on the concentration field. The results showed that increasing the porosity, Schmidt number, Sherwood number and aspect ratio resulted to a decrease in the concentration field whereas increase in the buoyancy forces had a positive effect on the flow by increasing its concentration and hence enhancing the growth and productivity of the plant.\",\"PeriodicalId\":8541,\"journal\":{\"name\":\"Asian Journal of Physical and Chemical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Physical and Chemical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajopacs/2019/v7i330097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Physical and Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajopacs/2019/v7i330097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Mathematical Model of the Biomechanics of Green Plants
This study considers the biomechanics in the stem of green plants. The process of translocation and transpiration is discussed. The coupled non-linear differential equations governing the motion of the flow were non-dimensionlized and then solved using the homotopy perturbation method. The effects of various parameters such as Schmidt number, porosity, buoyancy forces (thermal and concentration Grashof numbers) and aspect ratio embedded in the flow were examined on the concentration field. The results showed that increasing the porosity, Schmidt number, Sherwood number and aspect ratio resulted to a decrease in the concentration field whereas increase in the buoyancy forces had a positive effect on the flow by increasing its concentration and hence enhancing the growth and productivity of the plant.