V. Baryshev, G. V. Osipenko, A. Novoselov, A. G. Sukhoverskaya, A. Boyko, M. Aleynikov
{"title":"铷脉冲光泵浦频率标准,频率不稳定性为2.5 × 10−13τ−1/2","authors":"V. Baryshev, G. V. Osipenko, A. Novoselov, A. G. Sukhoverskaya, A. Boyko, M. Aleynikov","doi":"10.1070/qel18057","DOIUrl":null,"url":null,"abstract":"The work is dedicated to the further development of a compact quantum frequency standard based on a rubidium gas cell with a mixture of buffer gases. The results of frequency measurements and analysis of short-term frequency instability obtained on a laboratory prototype of a microwave rubidium atomic frequency standard (RAFS) with pulsed optical pumping (POP) are presented. The main in magnitude contributions to the overall frequency instability of the RAFS with POP are estimated. Short-term frequency instability expressed in terms of the Allan deviation and measured at averaging times τ up to several tens of seconds, σy (τ) = 2.5×10−13 τ −1/2, coincides satisfactorily with the calculated value of σy (τ) = 2.1×10−13 τ −1/2.","PeriodicalId":20775,"journal":{"name":"Quantum Electronics","volume":"363 1","pages":"538 - 543"},"PeriodicalIF":0.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rubidium frequency standard with pulsed optical pumping and frequency instability of 2.5 × 10−13τ − 1/2\",\"authors\":\"V. Baryshev, G. V. Osipenko, A. Novoselov, A. G. Sukhoverskaya, A. Boyko, M. Aleynikov\",\"doi\":\"10.1070/qel18057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is dedicated to the further development of a compact quantum frequency standard based on a rubidium gas cell with a mixture of buffer gases. The results of frequency measurements and analysis of short-term frequency instability obtained on a laboratory prototype of a microwave rubidium atomic frequency standard (RAFS) with pulsed optical pumping (POP) are presented. The main in magnitude contributions to the overall frequency instability of the RAFS with POP are estimated. Short-term frequency instability expressed in terms of the Allan deviation and measured at averaging times τ up to several tens of seconds, σy (τ) = 2.5×10−13 τ −1/2, coincides satisfactorily with the calculated value of σy (τ) = 2.1×10−13 τ −1/2.\",\"PeriodicalId\":20775,\"journal\":{\"name\":\"Quantum Electronics\",\"volume\":\"363 1\",\"pages\":\"538 - 543\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1070/qel18057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1070/qel18057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Rubidium frequency standard with pulsed optical pumping and frequency instability of 2.5 × 10−13τ − 1/2
The work is dedicated to the further development of a compact quantum frequency standard based on a rubidium gas cell with a mixture of buffer gases. The results of frequency measurements and analysis of short-term frequency instability obtained on a laboratory prototype of a microwave rubidium atomic frequency standard (RAFS) with pulsed optical pumping (POP) are presented. The main in magnitude contributions to the overall frequency instability of the RAFS with POP are estimated. Short-term frequency instability expressed in terms of the Allan deviation and measured at averaging times τ up to several tens of seconds, σy (τ) = 2.5×10−13 τ −1/2, coincides satisfactorily with the calculated value of σy (τ) = 2.1×10−13 τ −1/2.
期刊介绍:
Quantum Electronics covers the following principal headings
Letters
Lasers
Active Media
Interaction of Laser Radiation with Matter
Laser Plasma
Nonlinear Optical Phenomena
Nanotechnologies
Quantum Electronic Devices
Optical Processing of Information
Fiber and Integrated Optics
Laser Applications in Technology and Metrology, Biology and Medicine.