{"title":"通过多目标产生高能量/强度轫致辐射,并通过锥形壁和磁场的小角度后向散射使散射电子聚焦II——线性加速器在放射治疗中的效果增强","authors":"W. Ulmer","doi":"10.4236/IJMPCERO.2013.24020","DOIUrl":null,"url":null,"abstract":"The yield of bremsstrahlung from collisions of fast electrons (energy at least 6 MeV) with a Tungsten target can be significantly improved by exploitation of Tungsten wall scatter in a multi-layered target. A simplified version of a previously developed principle is also able to focus small angle scattered electrons by a Tungsten wall. It is necessary that the thickness of each Tungsten layer does not exceed 0.04 mm - a thickness of 0.03 mm is suitable for accelerators in medical physics. Further focusing of electrons results from suitable magnetic fields with field strength between 0.5 Tesla and 1.2 Tesla (if the cone with multi-layered targets is rather narrow). Linear accelerators in radiation therapy only need focusing by wall scatter without further magnetic fields (standard case: 31 plates with 0.03 mm thickness and 1 mm distance between the plates). We considered three cases with importance in medical physics: A very small cone with additional magnetic field for focusing (field diameter at 90 cm depth: 6cm), a medium cone with optional magnetic field (field diameter at 90 cm depth: 13 cm) and broad cone without magnetic field (field diameter at 90 cm depth: 30 cm). All these cases can be positioned in a carousel. Measurements have been performed in the existing carousel positioned in the plane of the flattening filter and scatter foils for electrons.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Creation of high energy/intensity bremsstrahlung by a multitarget and focusing of the scattered electrons by small-angle backscatter at a cone wall and a magnetic field II - Enhancement of the outcome of linear accelerators in radiotherapy\",\"authors\":\"W. Ulmer\",\"doi\":\"10.4236/IJMPCERO.2013.24020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The yield of bremsstrahlung from collisions of fast electrons (energy at least 6 MeV) with a Tungsten target can be significantly improved by exploitation of Tungsten wall scatter in a multi-layered target. A simplified version of a previously developed principle is also able to focus small angle scattered electrons by a Tungsten wall. It is necessary that the thickness of each Tungsten layer does not exceed 0.04 mm - a thickness of 0.03 mm is suitable for accelerators in medical physics. Further focusing of electrons results from suitable magnetic fields with field strength between 0.5 Tesla and 1.2 Tesla (if the cone with multi-layered targets is rather narrow). Linear accelerators in radiation therapy only need focusing by wall scatter without further magnetic fields (standard case: 31 plates with 0.03 mm thickness and 1 mm distance between the plates). We considered three cases with importance in medical physics: A very small cone with additional magnetic field for focusing (field diameter at 90 cm depth: 6cm), a medium cone with optional magnetic field (field diameter at 90 cm depth: 13 cm) and broad cone without magnetic field (field diameter at 90 cm depth: 30 cm). All these cases can be positioned in a carousel. Measurements have been performed in the existing carousel positioned in the plane of the flattening filter and scatter foils for electrons.\",\"PeriodicalId\":8462,\"journal\":{\"name\":\"arXiv: Medical Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMPCERO.2013.24020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/IJMPCERO.2013.24020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Creation of high energy/intensity bremsstrahlung by a multitarget and focusing of the scattered electrons by small-angle backscatter at a cone wall and a magnetic field II - Enhancement of the outcome of linear accelerators in radiotherapy
The yield of bremsstrahlung from collisions of fast electrons (energy at least 6 MeV) with a Tungsten target can be significantly improved by exploitation of Tungsten wall scatter in a multi-layered target. A simplified version of a previously developed principle is also able to focus small angle scattered electrons by a Tungsten wall. It is necessary that the thickness of each Tungsten layer does not exceed 0.04 mm - a thickness of 0.03 mm is suitable for accelerators in medical physics. Further focusing of electrons results from suitable magnetic fields with field strength between 0.5 Tesla and 1.2 Tesla (if the cone with multi-layered targets is rather narrow). Linear accelerators in radiation therapy only need focusing by wall scatter without further magnetic fields (standard case: 31 plates with 0.03 mm thickness and 1 mm distance between the plates). We considered three cases with importance in medical physics: A very small cone with additional magnetic field for focusing (field diameter at 90 cm depth: 6cm), a medium cone with optional magnetic field (field diameter at 90 cm depth: 13 cm) and broad cone without magnetic field (field diameter at 90 cm depth: 30 cm). All these cases can be positioned in a carousel. Measurements have been performed in the existing carousel positioned in the plane of the flattening filter and scatter foils for electrons.