隧道火灾中点抽和纵向通风对最大烟温和后层长度的协同效应研究

E. Barati, Seyyed Omid Haghani
{"title":"隧道火灾中点抽和纵向通风对最大烟温和后层长度的协同效应研究","authors":"E. Barati, Seyyed Omid Haghani","doi":"10.1155/2023/8081874","DOIUrl":null,"url":null,"abstract":"This study investigates the impact of combining longitudinal and point-extraction ventilated systems on temperature distribution and back-layering length in tunnel fires. Numerical simulations are conducted using a fire dynamic simulator (FDS), and reduced-scale tunnel fire experiments with a scale of 1/10 are introduced to provide supplementary data. Results indicate that the longitudinal velocity is more critical than other factors in reducing the highest temperature and casualties. Lowering the temperature below the tunnel ceiling is not caused by increasing the ceiling extraction velocity. Additionally, the study reveals that the fire source-ceiling distance and their relative positions play a crucial role in temperature distribution and plug-holing phenomenon in the tunnel. By using the Taguchi method, it is determined that a fire at a height of 0.125 m has a maximum ceiling temperature of 1.8, 1.3, and 1.1 times when the fire source happens on the floor with longitudinal velocities of 0.133, 0.265, and 0.53 m/s, respectively. The extraction point has diverse effects provided that the longitudinal ventilation velocity is set by critical velocity. The study’s objective is to provide tunnel engineering managers with a correlation to predict the highest temperature, which is a vital parameter for emergency evacuation. In conclusion, this study highlights the importance of considering longitudinal and point-extraction ventilated systems and their relative speeds in reducing the severity of tunnel fires.","PeriodicalId":52570,"journal":{"name":"Journal of Engineering Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the Synergetic Effect of Point-Extraction and Longitudinal Ventilation on the Maximum Smoke Temperature and Back-Layering Length in Tunnel Fires\",\"authors\":\"E. Barati, Seyyed Omid Haghani\",\"doi\":\"10.1155/2023/8081874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the impact of combining longitudinal and point-extraction ventilated systems on temperature distribution and back-layering length in tunnel fires. Numerical simulations are conducted using a fire dynamic simulator (FDS), and reduced-scale tunnel fire experiments with a scale of 1/10 are introduced to provide supplementary data. Results indicate that the longitudinal velocity is more critical than other factors in reducing the highest temperature and casualties. Lowering the temperature below the tunnel ceiling is not caused by increasing the ceiling extraction velocity. Additionally, the study reveals that the fire source-ceiling distance and their relative positions play a crucial role in temperature distribution and plug-holing phenomenon in the tunnel. By using the Taguchi method, it is determined that a fire at a height of 0.125 m has a maximum ceiling temperature of 1.8, 1.3, and 1.1 times when the fire source happens on the floor with longitudinal velocities of 0.133, 0.265, and 0.53 m/s, respectively. The extraction point has diverse effects provided that the longitudinal ventilation velocity is set by critical velocity. The study’s objective is to provide tunnel engineering managers with a correlation to predict the highest temperature, which is a vital parameter for emergency evacuation. In conclusion, this study highlights the importance of considering longitudinal and point-extraction ventilated systems and their relative speeds in reducing the severity of tunnel fires.\",\"PeriodicalId\":52570,\"journal\":{\"name\":\"Journal of Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8081874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8081874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了纵向通风与点式通风相结合对隧道火灾中温度分布和背层长度的影响。利用火灾动力学模拟器(FDS)进行了数值模拟,并引入了1/10的缩小尺寸的隧道火灾实验,以提供补充数据。结果表明,在降低最高温度和人员伤亡方面,纵向速度比其他因素更为关键。降低隧道顶板以下的温度不是通过增加顶板抽采速度引起的。火源与顶板的距离及其相对位置对隧道内温度分布和塞孔现象起着至关重要的作用。通过田口法确定,当火源发生在纵向速度分别为0.133、0.265和0.53 m/s的地板上时,高度为0.125 m的火灾最大顶棚温度分别为1.8倍、1.3倍和1.1倍。当纵向通风速度设定为临界速度时,抽采点的效果是多种多样的。该研究的目的是为隧道工程管理人员提供预测最高温度的相关性,这是紧急疏散的重要参数。总之,本研究强调了考虑纵向和点式通风系统及其相对速度在降低隧道火灾严重程度方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studying the Synergetic Effect of Point-Extraction and Longitudinal Ventilation on the Maximum Smoke Temperature and Back-Layering Length in Tunnel Fires
This study investigates the impact of combining longitudinal and point-extraction ventilated systems on temperature distribution and back-layering length in tunnel fires. Numerical simulations are conducted using a fire dynamic simulator (FDS), and reduced-scale tunnel fire experiments with a scale of 1/10 are introduced to provide supplementary data. Results indicate that the longitudinal velocity is more critical than other factors in reducing the highest temperature and casualties. Lowering the temperature below the tunnel ceiling is not caused by increasing the ceiling extraction velocity. Additionally, the study reveals that the fire source-ceiling distance and their relative positions play a crucial role in temperature distribution and plug-holing phenomenon in the tunnel. By using the Taguchi method, it is determined that a fire at a height of 0.125 m has a maximum ceiling temperature of 1.8, 1.3, and 1.1 times when the fire source happens on the floor with longitudinal velocities of 0.133, 0.265, and 0.53 m/s, respectively. The extraction point has diverse effects provided that the longitudinal ventilation velocity is set by critical velocity. The study’s objective is to provide tunnel engineering managers with a correlation to predict the highest temperature, which is a vital parameter for emergency evacuation. In conclusion, this study highlights the importance of considering longitudinal and point-extraction ventilated systems and their relative speeds in reducing the severity of tunnel fires.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
16 weeks
期刊最新文献
POSSIBILITIES OF OBTAINING AND VALORIZING DIETARY FIBERS IN THE CONTEXT OF THE CIRCULAR BIOECONOMY USE OF VEGETABLE-DERIVED PROTEINS FOR NEW FOOD PRODUCTS A Study on the Heat Wave Conditions over Bangladesh During 1990 - 2019 WHERE IS ARTIFICIAL INTELLIGENCE GOING? Steam Boilers in Ready-Made Garments Industry in Bangladesh: Existing Scenario and Scope for Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1