基于高效神经网络计算的老年痴呆症患者无线脑电波分类

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2018-07-01 DOI:10.1142/S2424922X18500043
G. Sheen
{"title":"基于高效神经网络计算的老年痴呆症患者无线脑电波分类","authors":"G. Sheen","doi":"10.1142/S2424922X18500043","DOIUrl":null,"url":null,"abstract":"Wireless recording and real time classification of brain waves are essential steps towards future wearable devices to assist Alzheimer’s patients in conveying their thoughts. This work is concerned with efficient computation of a dimension-reduced neural network (NN) model on Alzheimer’s patient data recorded by a wireless headset. Due to much fewer sensors in wireless recording than the number of electrodes in a traditional wired cap and shorter attention span of an Alzheimer’s patient than a normal person, the data is much more restrictive than is typical in neural robotics and mind-controlled games. To overcome this challenge, an alternating minimization (AM) method is developed for network training. AM minimizes a nonsmooth and nonconvex objective function one variable at a time while fixing the rest. The sub-problem for each variable is piecewise convex with a finite number of minima. The overall iterative AM method is descending and free of step size (learning parameter) in the standard gradient descent method. The proposed model, trained by the AM method, significantly outperforms the standard NN model trained by the stochastic gradient descent method in classifying four daily thoughts, reaching accuracies around 90% for Alzheimer’s patient. Curved decision boundaries of the proposed model with multiple hidden neurons are found analytically to establish the nonlinear nature of the classification.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"3 1","pages":"1850004:1-1850004:19"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wireless Brain Wave Classification for Alzheimer's Patients via Efficient Neural Network Computation\",\"authors\":\"G. Sheen\",\"doi\":\"10.1142/S2424922X18500043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless recording and real time classification of brain waves are essential steps towards future wearable devices to assist Alzheimer’s patients in conveying their thoughts. This work is concerned with efficient computation of a dimension-reduced neural network (NN) model on Alzheimer’s patient data recorded by a wireless headset. Due to much fewer sensors in wireless recording than the number of electrodes in a traditional wired cap and shorter attention span of an Alzheimer’s patient than a normal person, the data is much more restrictive than is typical in neural robotics and mind-controlled games. To overcome this challenge, an alternating minimization (AM) method is developed for network training. AM minimizes a nonsmooth and nonconvex objective function one variable at a time while fixing the rest. The sub-problem for each variable is piecewise convex with a finite number of minima. The overall iterative AM method is descending and free of step size (learning parameter) in the standard gradient descent method. The proposed model, trained by the AM method, significantly outperforms the standard NN model trained by the stochastic gradient descent method in classifying four daily thoughts, reaching accuracies around 90% for Alzheimer’s patient. Curved decision boundaries of the proposed model with multiple hidden neurons are found analytically to establish the nonlinear nature of the classification.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"3 1\",\"pages\":\"1850004:1-1850004:19\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X18500043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X18500043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

无线记录和实时脑电波分类是未来可穿戴设备帮助阿尔茨海默病患者传达思想的重要步骤。本文研究了一种基于无线耳机记录的阿尔茨海默病患者数据的降维神经网络(NN)模型的高效计算。由于无线记录中的传感器比传统有线帽中的电极数量少得多,而且阿尔茨海默病患者的注意力持续时间比正常人短,因此数据比神经机器人和精神控制游戏中的典型数据要严格得多。为了克服这一挑战,开发了一种用于网络训练的交替最小化(AM)方法。AM最小化一个非光滑和非凸目标函数在一个时间的一个变量,同时固定其余的。每个变量的子问题都是具有有限个最小值的分段凸问题。整体迭代AM方法是递减的,不受标准梯度下降法的步长(学习参数)的影响。采用AM方法训练的模型在对四种日常思维进行分类方面明显优于随机梯度下降法训练的标准NN模型,对阿尔茨海默病患者的准确率达到90%左右。通过解析方法建立了包含多个隐藏神经元的模型的曲线决策边界,建立了分类的非线性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wireless Brain Wave Classification for Alzheimer's Patients via Efficient Neural Network Computation
Wireless recording and real time classification of brain waves are essential steps towards future wearable devices to assist Alzheimer’s patients in conveying their thoughts. This work is concerned with efficient computation of a dimension-reduced neural network (NN) model on Alzheimer’s patient data recorded by a wireless headset. Due to much fewer sensors in wireless recording than the number of electrodes in a traditional wired cap and shorter attention span of an Alzheimer’s patient than a normal person, the data is much more restrictive than is typical in neural robotics and mind-controlled games. To overcome this challenge, an alternating minimization (AM) method is developed for network training. AM minimizes a nonsmooth and nonconvex objective function one variable at a time while fixing the rest. The sub-problem for each variable is piecewise convex with a finite number of minima. The overall iterative AM method is descending and free of step size (learning parameter) in the standard gradient descent method. The proposed model, trained by the AM method, significantly outperforms the standard NN model trained by the stochastic gradient descent method in classifying four daily thoughts, reaching accuracies around 90% for Alzheimer’s patient. Curved decision boundaries of the proposed model with multiple hidden neurons are found analytically to establish the nonlinear nature of the classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1