{"title":"基于小波概率神经网络的缝褶客观评价研究","authors":"Li Yanmei, Q. Xiaokun, Jiang Zhenzhen","doi":"10.1109/ICNC.2011.6021915","DOIUrl":null,"url":null,"abstract":"A new method to objectively evaluate seam pucker is brought out in this paper. Firstly, AATCC 88B seam pucker standard pictures are taken by digital camera. After wavelet transform of images, the six parameters that are standard deviation of horizontal, vertical and diagonal detail coefficients on 5th dimension, horizontal detail coefficients and histogram and image entropy are extracted, on 4th are extracted. Then, objective evaluation model of seam pucker based on probabilistic neural network is constructed and its prediction accuracy is more than 90% by test. This prediction model can be used to evaluate seam pucker grades of unknown samples, so that to overcome ambiguity and uncertainty of subjective evaluation.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"88 1","pages":"259-262"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on objective evaluation of seam pucker based on wavelet probabilistic neural network\",\"authors\":\"Li Yanmei, Q. Xiaokun, Jiang Zhenzhen\",\"doi\":\"10.1109/ICNC.2011.6021915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method to objectively evaluate seam pucker is brought out in this paper. Firstly, AATCC 88B seam pucker standard pictures are taken by digital camera. After wavelet transform of images, the six parameters that are standard deviation of horizontal, vertical and diagonal detail coefficients on 5th dimension, horizontal detail coefficients and histogram and image entropy are extracted, on 4th are extracted. Then, objective evaluation model of seam pucker based on probabilistic neural network is constructed and its prediction accuracy is more than 90% by test. This prediction model can be used to evaluate seam pucker grades of unknown samples, so that to overcome ambiguity and uncertainty of subjective evaluation.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"88 1\",\"pages\":\"259-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6021915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6021915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on objective evaluation of seam pucker based on wavelet probabilistic neural network
A new method to objectively evaluate seam pucker is brought out in this paper. Firstly, AATCC 88B seam pucker standard pictures are taken by digital camera. After wavelet transform of images, the six parameters that are standard deviation of horizontal, vertical and diagonal detail coefficients on 5th dimension, horizontal detail coefficients and histogram and image entropy are extracted, on 4th are extracted. Then, objective evaluation model of seam pucker based on probabilistic neural network is constructed and its prediction accuracy is more than 90% by test. This prediction model can be used to evaluate seam pucker grades of unknown samples, so that to overcome ambiguity and uncertainty of subjective evaluation.