演示:符号n变系统

Jun Xu, Pinyao Guo, Bo Chen, R. Erbacher, Ping Chen, Peng Liu
{"title":"演示:符号n变系统","authors":"Jun Xu, Pinyao Guo, Bo Chen, R. Erbacher, Ping Chen, Peng Liu","doi":"10.1145/2995272.2995284","DOIUrl":null,"url":null,"abstract":"This demo paper describes an approach to detect memory corruption attacks using artificial diversity. Our approach conducts offline symbolic execution of multiple variants of a system to identify paths which diverge in different variants. In addition, we build an efficient input matcher to check whether an online input matches the constraints of a diverging path, to detect potential malicious input. By evaluating the performance of a demo system built on Ghttpd, we find that per-input matching consumes only 70% to 96% of the real processing time in the master, which indicates a performance superiority for real world deployment.","PeriodicalId":20539,"journal":{"name":"Proceedings of the 2016 ACM Workshop on Moving Target Defense","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Demo: A Symbolic N-Variant System\",\"authors\":\"Jun Xu, Pinyao Guo, Bo Chen, R. Erbacher, Ping Chen, Peng Liu\",\"doi\":\"10.1145/2995272.2995284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This demo paper describes an approach to detect memory corruption attacks using artificial diversity. Our approach conducts offline symbolic execution of multiple variants of a system to identify paths which diverge in different variants. In addition, we build an efficient input matcher to check whether an online input matches the constraints of a diverging path, to detect potential malicious input. By evaluating the performance of a demo system built on Ghttpd, we find that per-input matching consumes only 70% to 96% of the real processing time in the master, which indicates a performance superiority for real world deployment.\",\"PeriodicalId\":20539,\"journal\":{\"name\":\"Proceedings of the 2016 ACM Workshop on Moving Target Defense\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM Workshop on Moving Target Defense\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2995272.2995284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM Workshop on Moving Target Defense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2995272.2995284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这篇演示论文描述了一种使用人工分集检测内存损坏攻击的方法。我们的方法对系统的多个变体进行离线符号执行,以识别在不同变体中发散的路径。此外,我们建立了一个有效的输入匹配器来检查在线输入是否匹配发散路径的约束,以检测潜在的恶意输入。通过评估基于Ghttpd构建的演示系统的性能,我们发现每个输入匹配仅消耗主服务器中实际处理时间的70%到96%,这表明在实际部署中具有性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demo: A Symbolic N-Variant System
This demo paper describes an approach to detect memory corruption attacks using artificial diversity. Our approach conducts offline symbolic execution of multiple variants of a system to identify paths which diverge in different variants. In addition, we build an efficient input matcher to check whether an online input matches the constraints of a diverging path, to detect potential malicious input. By evaluating the performance of a demo system built on Ghttpd, we find that per-input matching consumes only 70% to 96% of the real processing time in the master, which indicates a performance superiority for real world deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moving Target Defense: a Journey from Idea to Product Session details: Keynote Talk Automated Effectiveness Evaluation of Moving Target Defenses: Metrics for Missions and Attacks Markov Modeling of Moving Target Defense Games Session details: Invited Industry Talk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1