天然小脑iFGF14复合物的蛋白质组学分析

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Channels Pub Date : 2016-02-18 DOI:10.1080/19336950.2016.1153203
Marie K. Bosch, J. Nerbonne, R. Reid Townsend, Haruko Miyazaki, N. Nukina, D. Ornitz, Céline Marionneau
{"title":"天然小脑iFGF14复合物的蛋白质组学分析","authors":"Marie K. Bosch, J. Nerbonne, R. Reid Townsend, Haruko Miyazaki, N. Nukina, D. Ornitz, Céline Marionneau","doi":"10.1080/19336950.2016.1153203","DOIUrl":null,"url":null,"abstract":"ABSTRACT Intracellular Fibroblast Growth Factor 14 (iFGF14) and the other intracellular FGFs (iFGF11-13) regulate the properties and densities of voltage-gated neuronal and cardiac Na+ (Nav) channels. Recent studies have demonstrated that the iFGFs can also regulate native voltage-gated Ca2+ (Cav) channels. In the present study, a mass spectrometry (MS)-based proteomic approach was used to identify the components of native cerebellar iFGF14 complexes. Using an anti-iFGF14 antibody, native iFGF14 complexes were immunoprecipitated from wild type adult mouse cerebellum. Parallel control experiments were performed on cerebellar proteins isolated from mice (Fgf14−/−) harboring a targeted disruption of the Fgf14 locus. MS analyses of immunoprecipitated proteins demonstrated that the vast majority of proteins identified in native cerebellar iFGF14 complexes are Nav channel pore-forming (α) subunits or proteins previously reported to interact with Nav α subunits. In contrast, no Cav channel α or accessory subunits were revealed in cerebellar iFGF14 immunoprecipitates. Additional experiments were completed using an anti-PanNav antibody to immunoprecipitate Nav channel complexes from wild type and Fgf14−/− mouse cerebellum. Western blot and MS analyses revealed that the loss of iFGF14 does not measurably affect the protein composition or the relative abundance of Nav channel interacting proteins in native adult mouse cerebellar Nav channel complexes.","PeriodicalId":9750,"journal":{"name":"Channels","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2016-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Proteomic analysis of native cerebellar iFGF14 complexes\",\"authors\":\"Marie K. Bosch, J. Nerbonne, R. Reid Townsend, Haruko Miyazaki, N. Nukina, D. Ornitz, Céline Marionneau\",\"doi\":\"10.1080/19336950.2016.1153203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Intracellular Fibroblast Growth Factor 14 (iFGF14) and the other intracellular FGFs (iFGF11-13) regulate the properties and densities of voltage-gated neuronal and cardiac Na+ (Nav) channels. Recent studies have demonstrated that the iFGFs can also regulate native voltage-gated Ca2+ (Cav) channels. In the present study, a mass spectrometry (MS)-based proteomic approach was used to identify the components of native cerebellar iFGF14 complexes. Using an anti-iFGF14 antibody, native iFGF14 complexes were immunoprecipitated from wild type adult mouse cerebellum. Parallel control experiments were performed on cerebellar proteins isolated from mice (Fgf14−/−) harboring a targeted disruption of the Fgf14 locus. MS analyses of immunoprecipitated proteins demonstrated that the vast majority of proteins identified in native cerebellar iFGF14 complexes are Nav channel pore-forming (α) subunits or proteins previously reported to interact with Nav α subunits. In contrast, no Cav channel α or accessory subunits were revealed in cerebellar iFGF14 immunoprecipitates. Additional experiments were completed using an anti-PanNav antibody to immunoprecipitate Nav channel complexes from wild type and Fgf14−/− mouse cerebellum. Western blot and MS analyses revealed that the loss of iFGF14 does not measurably affect the protein composition or the relative abundance of Nav channel interacting proteins in native adult mouse cerebellar Nav channel complexes.\",\"PeriodicalId\":9750,\"journal\":{\"name\":\"Channels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2016-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Channels\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336950.2016.1153203\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336950.2016.1153203","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 9

摘要

细胞内成纤维细胞生长因子14 (iFGF14)和其他细胞内FGFs (iFGF11-13)调节电压门控神经元和心脏Na+ (Nav)通道的性质和密度。最近的研究表明,iFGFs也可以调节天然电压门控Ca2+ (Cav)通道。在本研究中,基于质谱(MS)的蛋白质组学方法被用于鉴定天然小脑iFGF14复合物的成分。利用抗iFGF14抗体,免疫沉淀野生型成年小鼠小脑的天然iFGF14复合物。平行对照实验对从小鼠分离的小脑蛋白(Fgf14−/−)进行,这些蛋白含有Fgf14位点的靶向破坏。免疫沉淀蛋白的质谱分析表明,在天然小脑iFGF14复合物中鉴定的绝大多数蛋白是Nav通道孔隙形成(α)亚基或先前报道的与Nav α亚基相互作用的蛋白。相比之下,小脑iFGF14免疫沉淀物中未发现Cav通道α或附属亚基。使用抗pannav抗体对野生型和Fgf14 - / -小鼠小脑的Nav通道复合物进行免疫沉淀。Western blot和MS分析显示,iFGF14的缺失不会显著影响天然成年小鼠小脑Nav通道复合物中蛋白质组成或Nav通道相互作用蛋白的相对丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteomic analysis of native cerebellar iFGF14 complexes
ABSTRACT Intracellular Fibroblast Growth Factor 14 (iFGF14) and the other intracellular FGFs (iFGF11-13) regulate the properties and densities of voltage-gated neuronal and cardiac Na+ (Nav) channels. Recent studies have demonstrated that the iFGFs can also regulate native voltage-gated Ca2+ (Cav) channels. In the present study, a mass spectrometry (MS)-based proteomic approach was used to identify the components of native cerebellar iFGF14 complexes. Using an anti-iFGF14 antibody, native iFGF14 complexes were immunoprecipitated from wild type adult mouse cerebellum. Parallel control experiments were performed on cerebellar proteins isolated from mice (Fgf14−/−) harboring a targeted disruption of the Fgf14 locus. MS analyses of immunoprecipitated proteins demonstrated that the vast majority of proteins identified in native cerebellar iFGF14 complexes are Nav channel pore-forming (α) subunits or proteins previously reported to interact with Nav α subunits. In contrast, no Cav channel α or accessory subunits were revealed in cerebellar iFGF14 immunoprecipitates. Additional experiments were completed using an anti-PanNav antibody to immunoprecipitate Nav channel complexes from wild type and Fgf14−/− mouse cerebellum. Western blot and MS analyses revealed that the loss of iFGF14 does not measurably affect the protein composition or the relative abundance of Nav channel interacting proteins in native adult mouse cerebellar Nav channel complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Channels
Channels 生物-生化与分子生物学
CiteScore
5.90
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Channels is an open access journal for all aspects of ion channel research. The journal publishes high quality papers that shed new light on ion channel and ion transporter/exchanger function, structure, biophysics, pharmacology, and regulation in health and disease. Channels welcomes interdisciplinary approaches that address ion channel physiology in areas such as neuroscience, cardiovascular sciences, cancer research, endocrinology, and gastroenterology. Our aim is to foster communication among the ion channel and transporter communities and facilitate the advancement of the field.
期刊最新文献
Piezo1 channel: A global bibliometric analysis from 2010 to 2024. The activation thresholds and inactivation kinetics of poking-evoked PIEZO1 and PIEZO2 currents are sensitive to subtle variations in mechanical stimulation parameters. Non-ionotropic voltage-gated calcium channel signaling Novel protocol for multiple-dose oral administration of the L-type Ca2+ channel blocker isradipine in mice: A dose-finding pharmacokinetic study Structural biology of voltage-gated calcium channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1