高锰钢HMS技术在锚链中的应用

N. Verma, A. Wasson, Zhen Li, H. Sidhar, X. Yue, Haiping He, H. Jin, S. Ling, H. Jun, A. Ozekcin
{"title":"高锰钢HMS技术在锚链中的应用","authors":"N. Verma, A. Wasson, Zhen Li, H. Sidhar, X. Yue, Haiping He, H. Jin, S. Ling, H. Jun, A. Ozekcin","doi":"10.4043/29246-MS","DOIUrl":null,"url":null,"abstract":"\n Oil and gas industry experiences indicate mooring chain corrosion is a major challenge. Observed corrosion rates in the field can be several times higher than the design allowance. In addition, pitting corrosion is not considered in design but can be significant in service. Pre-emptive chain replacements may be required which are typically very costly. In addition to corrosion, some of the other performance factors for mooring chains include strength, wear resistance, toughness and fatigue resistance. Carbon steel is the conventional material currently employed for mooring chains. There are significant incentives to develop new material technologies with improved seawater corrosion and wear performance for mooring chain application.\n This paper describes one such new material technology – High Manganese Steel (HMS), and its assessment for mooring chain application. HMS is a family of alloyed steels that, when optimized, can offer improved properties over conventional carbon steel. Several HMS chemistries were manufactured, on which small scale performance evaluation testing and weldability assessments were carried out. Based on the assessments, these custom HMS alloys show promising results in terms of the performance factors required for mooring chain application.","PeriodicalId":11149,"journal":{"name":"Day 1 Mon, May 06, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Manganese Steel HMS Technology for Mooring Chains Application\",\"authors\":\"N. Verma, A. Wasson, Zhen Li, H. Sidhar, X. Yue, Haiping He, H. Jin, S. Ling, H. Jun, A. Ozekcin\",\"doi\":\"10.4043/29246-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Oil and gas industry experiences indicate mooring chain corrosion is a major challenge. Observed corrosion rates in the field can be several times higher than the design allowance. In addition, pitting corrosion is not considered in design but can be significant in service. Pre-emptive chain replacements may be required which are typically very costly. In addition to corrosion, some of the other performance factors for mooring chains include strength, wear resistance, toughness and fatigue resistance. Carbon steel is the conventional material currently employed for mooring chains. There are significant incentives to develop new material technologies with improved seawater corrosion and wear performance for mooring chain application.\\n This paper describes one such new material technology – High Manganese Steel (HMS), and its assessment for mooring chain application. HMS is a family of alloyed steels that, when optimized, can offer improved properties over conventional carbon steel. Several HMS chemistries were manufactured, on which small scale performance evaluation testing and weldability assessments were carried out. Based on the assessments, these custom HMS alloys show promising results in terms of the performance factors required for mooring chain application.\",\"PeriodicalId\":11149,\"journal\":{\"name\":\"Day 1 Mon, May 06, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, May 06, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29246-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, May 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29246-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

油气行业的经验表明,锚链腐蚀是一个重大挑战。现场观察到的腐蚀速率可能比设计允许值高几倍。此外,点蚀在设计中没有考虑到,但在使用中可能会很严重。可能需要先发制人地更换链条,这通常非常昂贵。除腐蚀外,锚链的其他性能因素还包括强度、耐磨性、韧性和抗疲劳性。碳钢是目前常用的系缆材料。开发具有改善海水腐蚀和磨损性能的新材料技术用于系泊链的应用有很大的动力。本文介绍了一种新型材料技术——高锰钢(HMS),并对其在锚链中的应用进行了评价。HMS是一种合金钢,经过优化后,可以提供比传统碳钢更好的性能。制造了几种HMS化学品,并对其进行了小规模的性能评估测试和可焊性评估。根据评估,这些定制的HMS合金在系泊链应用所需的性能因素方面显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Manganese Steel HMS Technology for Mooring Chains Application
Oil and gas industry experiences indicate mooring chain corrosion is a major challenge. Observed corrosion rates in the field can be several times higher than the design allowance. In addition, pitting corrosion is not considered in design but can be significant in service. Pre-emptive chain replacements may be required which are typically very costly. In addition to corrosion, some of the other performance factors for mooring chains include strength, wear resistance, toughness and fatigue resistance. Carbon steel is the conventional material currently employed for mooring chains. There are significant incentives to develop new material technologies with improved seawater corrosion and wear performance for mooring chain application. This paper describes one such new material technology – High Manganese Steel (HMS), and its assessment for mooring chain application. HMS is a family of alloyed steels that, when optimized, can offer improved properties over conventional carbon steel. Several HMS chemistries were manufactured, on which small scale performance evaluation testing and weldability assessments were carried out. Based on the assessments, these custom HMS alloys show promising results in terms of the performance factors required for mooring chain application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Look into the 2017 SNAME OC-8 Comparative Wind Load Study A Family of Practical Foundation Models for Dynamic Analyses of Offshore Wind Turbines Turret-Moored FPSO Yaw Motions in a Squall-Prone Region Ultra-Long Subsea Gas Condensate Tie Back – Pseudo Dry Gas – Liquid Handling System Deepwater Opportunities Extra Long Oil Tiebacks Developments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1