等离子体执行器在金属NACA 4418上的流动分离控制

R. Bardera-Mora, A. Conesa, Mario Sánchez García
{"title":"等离子体执行器在金属NACA 4418上的流动分离控制","authors":"R. Bardera-Mora, A. Conesa, Mario Sánchez García","doi":"10.15866/IREASE.V10I6.12498","DOIUrl":null,"url":null,"abstract":"The flow control over an airfoil was experimentally investigated with a Dielectric Barrier Discharge (DBD) plasma actuator. A NACA 4418 airfoil was used and the fact that it is metallic is the main difference with the numerous articles about plasma actuators over airfoils. Metallic airfoils are normally avoided to reduce risk of arcing and electromagnetic interferences. The plasma actuator was located at x/c = 0.1 measured from the leading edge. Through the Schlieren visualization, the characteristics of the actuator in a quiescent ambient was observed, showing a double wall jet due to the interaction of the plasma actuator and the metallic airfoil used as substrate. One of them is a co-flow wall jet and the other one is a counter-flow wall jet. Time-averaged Particle Image Velocimetry (PIV) images were used to examine the flow for different angles of attack at Rec = 40.000 and Rec = 200.000 when plasma is on and off. Velocity maps show that the plasma actuation delays the separation for both low and moderate Reynolds numbers. The turbulent kinetic energy (TKE) and Reynolds stress values are reduced when plasma can control the flow, however plasma actuator increases these values when it does not avoid the separation. The velocity magnitude profiles show the influence of the co-flow wall jet near exposed-electrode but the counter-flow is not observed. A reduction of the wake with plasma actuation is also seen. The results confirm the authority of plasma actuators to control the flow separation over a metallic airfoil. The effectiveness and the global performance in applications such as wind turbines or UAVs at moderate Reynolds number, where metallic airfoils are used, is expected to be improved avoiding the separation with plasma actuators.","PeriodicalId":14462,"journal":{"name":"International Review of Aerospace Engineering","volume":"112 1 1","pages":"308-314"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow Separation Control with a Plasma Actuator Over a Metallic NACA 4418\",\"authors\":\"R. Bardera-Mora, A. Conesa, Mario Sánchez García\",\"doi\":\"10.15866/IREASE.V10I6.12498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flow control over an airfoil was experimentally investigated with a Dielectric Barrier Discharge (DBD) plasma actuator. A NACA 4418 airfoil was used and the fact that it is metallic is the main difference with the numerous articles about plasma actuators over airfoils. Metallic airfoils are normally avoided to reduce risk of arcing and electromagnetic interferences. The plasma actuator was located at x/c = 0.1 measured from the leading edge. Through the Schlieren visualization, the characteristics of the actuator in a quiescent ambient was observed, showing a double wall jet due to the interaction of the plasma actuator and the metallic airfoil used as substrate. One of them is a co-flow wall jet and the other one is a counter-flow wall jet. Time-averaged Particle Image Velocimetry (PIV) images were used to examine the flow for different angles of attack at Rec = 40.000 and Rec = 200.000 when plasma is on and off. Velocity maps show that the plasma actuation delays the separation for both low and moderate Reynolds numbers. The turbulent kinetic energy (TKE) and Reynolds stress values are reduced when plasma can control the flow, however plasma actuator increases these values when it does not avoid the separation. The velocity magnitude profiles show the influence of the co-flow wall jet near exposed-electrode but the counter-flow is not observed. A reduction of the wake with plasma actuation is also seen. The results confirm the authority of plasma actuators to control the flow separation over a metallic airfoil. The effectiveness and the global performance in applications such as wind turbines or UAVs at moderate Reynolds number, where metallic airfoils are used, is expected to be improved avoiding the separation with plasma actuators.\",\"PeriodicalId\":14462,\"journal\":{\"name\":\"International Review of Aerospace Engineering\",\"volume\":\"112 1 1\",\"pages\":\"308-314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREASE.V10I6.12498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREASE.V10I6.12498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用介质阻挡放电(DBD)等离子体作动器对翼型的流动控制进行了实验研究。一个NACA 4418翼型被使用,事实是,它是金属的主要区别是关于等离子体致动器在翼型的众多文章。通常避免金属翼型,以减少电弧和电磁干扰的风险。等离子体致动器位于x/c = 0.1处,从前缘开始测量。通过纹影显示,观察了静环境下致动器的特性,显示了等离子体致动器与作为衬底的金属翼型相互作用产生的双壁射流。其中一个是共流壁面射流另一个是逆流壁面射流。使用时间平均粒子图像测速(PIV)图像来检测等离子体打开和关闭时Rec = 40000和Rec = 200.000时不同攻角的流动。速度图显示等离子体驱动延迟了低和中等雷诺数的分离。当等离子体能够控制流动时,湍流动能(TKE)和雷诺应力值降低,而当等离子体执行器不能避免分离时,这些值升高。速度幅值分布显示了暴露电极附近共流壁面射流的影响,但没有观察到逆流。在等离子体驱动下,尾迹也会减小。结果证实了等离子体致动器控制金属翼型流动分离的权威。在中等雷诺数的风力涡轮机或无人机等使用金属翼型的应用中,其有效性和整体性能有望得到改善,避免与等离子体致动器分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow Separation Control with a Plasma Actuator Over a Metallic NACA 4418
The flow control over an airfoil was experimentally investigated with a Dielectric Barrier Discharge (DBD) plasma actuator. A NACA 4418 airfoil was used and the fact that it is metallic is the main difference with the numerous articles about plasma actuators over airfoils. Metallic airfoils are normally avoided to reduce risk of arcing and electromagnetic interferences. The plasma actuator was located at x/c = 0.1 measured from the leading edge. Through the Schlieren visualization, the characteristics of the actuator in a quiescent ambient was observed, showing a double wall jet due to the interaction of the plasma actuator and the metallic airfoil used as substrate. One of them is a co-flow wall jet and the other one is a counter-flow wall jet. Time-averaged Particle Image Velocimetry (PIV) images were used to examine the flow for different angles of attack at Rec = 40.000 and Rec = 200.000 when plasma is on and off. Velocity maps show that the plasma actuation delays the separation for both low and moderate Reynolds numbers. The turbulent kinetic energy (TKE) and Reynolds stress values are reduced when plasma can control the flow, however plasma actuator increases these values when it does not avoid the separation. The velocity magnitude profiles show the influence of the co-flow wall jet near exposed-electrode but the counter-flow is not observed. A reduction of the wake with plasma actuation is also seen. The results confirm the authority of plasma actuators to control the flow separation over a metallic airfoil. The effectiveness and the global performance in applications such as wind turbines or UAVs at moderate Reynolds number, where metallic airfoils are used, is expected to be improved avoiding the separation with plasma actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Analysis of Reduced Frequency on Flapping Tandem Foils Numerical Study on Aerodynamics Characteristics of R-HAN122 Along with Nose Modification Some Results of the Mobile Space Testing Facility Metamorphosis Prototype Design, Development and Test The System of Rotor Blade Tip’s Illumination for Unmanned Aerial Vehicles Aerodynamic Performance and Stability of a Transonic Axial Compressor Stage with an Airfoil Vortex Generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1