无线传感器网络中最大数据流的移动充电器调度算法

Wei Qi, Yiting Xu, Zongqian Gao, Zhiou Xu, Zhenzhen Huang, Shuo Xiao
{"title":"无线传感器网络中最大数据流的移动充电器调度算法","authors":"Wei Qi, Yiting Xu, Zongqian Gao, Zhiou Xu, Zhenzhen Huang, Shuo Xiao","doi":"10.3233/jcm-226667","DOIUrl":null,"url":null,"abstract":"Most nodes in wireless sensor networks (WSNs) are battery powered. However, battery replacement is inconvenient, which severely limits the application field of the networks. In addition, the energy consumption of nodes is not balanced in WSNs, nodes with low energy will seriously affect data transmission capability. To solve these problems, we utilize mobile chargers (MCs) in WSNs, which can move by itself and charge low-energy nodes. Firstly, we construct a mixed integer linear programming model (MILP) to solve maximum flow problem, which is proved to be NP-hard problem. To maximize flow to the sink nodes, the BottleNeck algorithm is used to generate the initial population for the genetic algorithm. This algorithm takes path as the unit and schedules MCs to charge the lowest energy node first. Then, the improved adaptive genetic algorithm (IAGA) is utilized to simulate the natural evolution process and search for the optimal deployment location for MCs. The experiment results show that IAGA can effectively improve the maximum flow of sink node compared with other methods.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"41 1","pages":"1573-1587"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile chargers scheduling algorithm for maximum data flow in wireless sensor networks\",\"authors\":\"Wei Qi, Yiting Xu, Zongqian Gao, Zhiou Xu, Zhenzhen Huang, Shuo Xiao\",\"doi\":\"10.3233/jcm-226667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most nodes in wireless sensor networks (WSNs) are battery powered. However, battery replacement is inconvenient, which severely limits the application field of the networks. In addition, the energy consumption of nodes is not balanced in WSNs, nodes with low energy will seriously affect data transmission capability. To solve these problems, we utilize mobile chargers (MCs) in WSNs, which can move by itself and charge low-energy nodes. Firstly, we construct a mixed integer linear programming model (MILP) to solve maximum flow problem, which is proved to be NP-hard problem. To maximize flow to the sink nodes, the BottleNeck algorithm is used to generate the initial population for the genetic algorithm. This algorithm takes path as the unit and schedules MCs to charge the lowest energy node first. Then, the improved adaptive genetic algorithm (IAGA) is utilized to simulate the natural evolution process and search for the optimal deployment location for MCs. The experiment results show that IAGA can effectively improve the maximum flow of sink node compared with other methods.\",\"PeriodicalId\":14668,\"journal\":{\"name\":\"J. Comput. Methods Sci. Eng.\",\"volume\":\"41 1\",\"pages\":\"1573-1587\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Methods Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(wsn)中的大多数节点都是由电池供电的。但电池更换不方便,严重限制了网络的应用领域。此外,无线传感器网络中节点的能量消耗不均衡,低能量的节点将严重影响数据传输能力。为了解决这些问题,我们在无线传感器网络中使用移动充电器(MCs),它可以自行移动并为低能量节点充电。首先,构造了求解最大流量问题的混合整数线性规划模型(MILP),证明了该模型是np困难问题。为了使流向汇聚节点的流量最大化,使用瓶颈算法为遗传算法生成初始种群。该算法以路径为单位,调度mc优先向能量最低的节点充电。然后,利用改进的自适应遗传算法(IAGA)模拟MCs的自然进化过程,搜索MCs的最优部署位置。实验结果表明,与其他方法相比,IAGA可以有效地提高汇聚节点的最大流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile chargers scheduling algorithm for maximum data flow in wireless sensor networks
Most nodes in wireless sensor networks (WSNs) are battery powered. However, battery replacement is inconvenient, which severely limits the application field of the networks. In addition, the energy consumption of nodes is not balanced in WSNs, nodes with low energy will seriously affect data transmission capability. To solve these problems, we utilize mobile chargers (MCs) in WSNs, which can move by itself and charge low-energy nodes. Firstly, we construct a mixed integer linear programming model (MILP) to solve maximum flow problem, which is proved to be NP-hard problem. To maximize flow to the sink nodes, the BottleNeck algorithm is used to generate the initial population for the genetic algorithm. This algorithm takes path as the unit and schedules MCs to charge the lowest energy node first. Then, the improved adaptive genetic algorithm (IAGA) is utilized to simulate the natural evolution process and search for the optimal deployment location for MCs. The experiment results show that IAGA can effectively improve the maximum flow of sink node compared with other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retracted to: Design and dynamics simulation of vehicle active occupant restraint protection system Flip-OFDM Optical MIMO Based VLC System Using ML/DL Approach Using the Structure-Behavior Coalescence Method to Formalize the Action Flow Semantics of UML 2.0 Activity Diagrams Accurate Calibration and Scalable Bandwidth Sharing of Multi-Queue SSDs Looking to Personalize Gaze Estimation Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1