利用自回归综合移动平均模型预测二氧化碳水平

M. Ravi Kumar, S. Panda, Venkateswara Reddy Guruguluri, Namratha Potluri, Nagasree Kolli
{"title":"利用自回归综合移动平均模型预测二氧化碳水平","authors":"M. Ravi Kumar, S. Panda, Venkateswara Reddy Guruguluri, Namratha Potluri, Nagasree Kolli","doi":"10.1109/AISP53593.2022.9760681","DOIUrl":null,"url":null,"abstract":"In the last few decades, the forecasting of lower atmospheric carbon dioxide (CO2) levels has been emphasized as an important topic among the atmospheric scientists and engineers for developing better predictive models in to predict the levels of CO2 keeping eye on the accelerated pollution. In the present work, we exploited the autoregressive integrated moving average (ARIMA) model capability for time-series prediction of CO2 level by considering the long-term recordings of air sample at Mauna Loa lab Observatory in Hawaii, USA, during the period from March 1958 to December 2001. The results reveal that forecasting of the parameter through ARIMA model has significantly improvements as compared to the existing techniques for such lower atmospheric parameters.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"28 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Carbon Dioxide Levels Using Autoregressive Integrated Moving Average Model\",\"authors\":\"M. Ravi Kumar, S. Panda, Venkateswara Reddy Guruguluri, Namratha Potluri, Nagasree Kolli\",\"doi\":\"10.1109/AISP53593.2022.9760681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few decades, the forecasting of lower atmospheric carbon dioxide (CO2) levels has been emphasized as an important topic among the atmospheric scientists and engineers for developing better predictive models in to predict the levels of CO2 keeping eye on the accelerated pollution. In the present work, we exploited the autoregressive integrated moving average (ARIMA) model capability for time-series prediction of CO2 level by considering the long-term recordings of air sample at Mauna Loa lab Observatory in Hawaii, USA, during the period from March 1958 to December 2001. The results reveal that forecasting of the parameter through ARIMA model has significantly improvements as compared to the existing techniques for such lower atmospheric parameters.\",\"PeriodicalId\":6793,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"28 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP53593.2022.9760681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,大气低层二氧化碳(CO2)水平的预测一直是大气科学家和工程师们强调的一个重要课题,以便开发更好的预测模型来预测二氧化碳水平,同时关注加速的污染。利用美国夏威夷莫纳罗亚实验室观测站1958年3月至2001年12月的长期记录资料,利用自回归综合移动平均(ARIMA)模式对CO2浓度进行了时间序列预测。结果表明,与现有的低大气参数预报技术相比,ARIMA模式对该参数的预报有显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting Carbon Dioxide Levels Using Autoregressive Integrated Moving Average Model
In the last few decades, the forecasting of lower atmospheric carbon dioxide (CO2) levels has been emphasized as an important topic among the atmospheric scientists and engineers for developing better predictive models in to predict the levels of CO2 keeping eye on the accelerated pollution. In the present work, we exploited the autoregressive integrated moving average (ARIMA) model capability for time-series prediction of CO2 level by considering the long-term recordings of air sample at Mauna Loa lab Observatory in Hawaii, USA, during the period from March 1958 to December 2001. The results reveal that forecasting of the parameter through ARIMA model has significantly improvements as compared to the existing techniques for such lower atmospheric parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5.80 GHz Harmonic Suppression Antenna for Wireless Energy Transfer Application Crack identification from concrete structure images using deep transfer learning Energy Efficient VoD with Cache in TWDM PON ring Blockchain-based IoT Device Security A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1