SICTA:使用连续干扰消除的0.693争用树算法

Yingqun Yu, G. Giannakis
{"title":"SICTA:使用连续干扰消除的0.693争用树算法","authors":"Yingqun Yu, G. Giannakis","doi":"10.1109/INFCOM.2005.1498469","DOIUrl":null,"url":null,"abstract":"Contention tree algorithms have provable stability properties, and are known to achieve stable throughput as high as 0.487 for the infinite population Poisson model. A common feature in all these random access protocols is that collided packets at the receive-node are always discarded. In this paper, we derive a novel tree algorithm (TA) that we naturally term SICTA because it relies on successive interference cancellation to resolve collided packets. Performance metrics including throughput and delay are analyzed to establish that SICTA outperforms existing contention tree algorithms reaching 0.693 in stable throughput.","PeriodicalId":20482,"journal":{"name":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","volume":"1 1","pages":"1908-1916 vol. 3"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"SICTA: a 0.693 contention tree algorithm using successive interference cancellation\",\"authors\":\"Yingqun Yu, G. Giannakis\",\"doi\":\"10.1109/INFCOM.2005.1498469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contention tree algorithms have provable stability properties, and are known to achieve stable throughput as high as 0.487 for the infinite population Poisson model. A common feature in all these random access protocols is that collided packets at the receive-node are always discarded. In this paper, we derive a novel tree algorithm (TA) that we naturally term SICTA because it relies on successive interference cancellation to resolve collided packets. Performance metrics including throughput and delay are analyzed to establish that SICTA outperforms existing contention tree algorithms reaching 0.693 in stable throughput.\",\"PeriodicalId\":20482,\"journal\":{\"name\":\"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.\",\"volume\":\"1 1\",\"pages\":\"1908-1916 vol. 3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2005.1498469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2005.1498469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

争用树算法具有可证明的稳定性,并且已知对于无限种群泊松模型可以实现高达0.487的稳定吞吐量。所有这些随机访问协议的一个共同特点是接收节点上发生冲突的数据包总是被丢弃。在本文中,我们推导了一种新的树算法(TA),我们自然地称之为SICTA,因为它依赖于连续干扰消除来解决碰撞数据包。分析了包括吞吐量和延迟在内的性能指标,确定SICTA在稳定吞吐量方面优于现有的争用树算法,达到0.693。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SICTA: a 0.693 contention tree algorithm using successive interference cancellation
Contention tree algorithms have provable stability properties, and are known to achieve stable throughput as high as 0.487 for the infinite population Poisson model. A common feature in all these random access protocols is that collided packets at the receive-node are always discarded. In this paper, we derive a novel tree algorithm (TA) that we naturally term SICTA because it relies on successive interference cancellation to resolve collided packets. Performance metrics including throughput and delay are analyzed to establish that SICTA outperforms existing contention tree algorithms reaching 0.693 in stable throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Provably competitive adaptive routing On the effectiveness of DDoS attacks on statistical filtering FIT: fast Internet traceback dPAM: a distributed prefetching protocol for scalable asynchronous multicast in P2P systems Cooperation and decision-making in a wireless multi-provider setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1