采用Takagi-Sugeno模糊模型的分数阶PID控制器用于混沌系统的镇定

Belgacem Mecheri, Djalil Boudjehem, B. Boudjehem
{"title":"采用Takagi-Sugeno模糊模型的分数阶PID控制器用于混沌系统的镇定","authors":"Belgacem Mecheri, Djalil Boudjehem, B. Boudjehem","doi":"10.1504/IJSCC.2021.10035684","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new fractional PIαDβ controller design to control chaotic systems. The controller design is based on the predictive control proposed by Yamamoto et al. (2001) and the fractional calculus. The parameters of the controller are determined by minimising the energy of the chaotic states using particle swarm optimisation. In order to obtain a simple model structure, we have used Takagi-Sugeno technique. A fractional PDβ and conventional predictive controllers have been also used as a comparative technique, in order to show the effectiveness of the proposed design one. The simulation results on Lorenz and Chen chaotic systems show the efficiency of the proposed fractional controller to reject disturbances and noises. These results show also that the fractional controller gives better results and overcome those of the fractional PDβ and conventional predictive controllers.","PeriodicalId":38610,"journal":{"name":"International Journal of Systems, Control and Communications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractional order PID controller for the stabilisation of chaotic systems using Takagi-Sugeno fuzzy model\",\"authors\":\"Belgacem Mecheri, Djalil Boudjehem, B. Boudjehem\",\"doi\":\"10.1504/IJSCC.2021.10035684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new fractional PIαDβ controller design to control chaotic systems. The controller design is based on the predictive control proposed by Yamamoto et al. (2001) and the fractional calculus. The parameters of the controller are determined by minimising the energy of the chaotic states using particle swarm optimisation. In order to obtain a simple model structure, we have used Takagi-Sugeno technique. A fractional PDβ and conventional predictive controllers have been also used as a comparative technique, in order to show the effectiveness of the proposed design one. The simulation results on Lorenz and Chen chaotic systems show the efficiency of the proposed fractional controller to reject disturbances and noises. These results show also that the fractional controller gives better results and overcome those of the fractional PDβ and conventional predictive controllers.\",\"PeriodicalId\":38610,\"journal\":{\"name\":\"International Journal of Systems, Control and Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Systems, Control and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSCC.2021.10035684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Systems, Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSCC.2021.10035684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的分数阶PIαDβ控制器设计来控制混沌系统。控制器设计基于Yamamoto等人(2001)提出的预测控制和分数阶微积分。控制器的参数是通过粒子群优化来最小化混沌状态的能量来确定的。为了获得一个简单的模型结构,我们使用了Takagi-Sugeno技术。为了证明所提出的预测控制器的有效性,还使用了分数阶PDβ和常规预测控制器作为比较技术。对Lorenz和Chen混沌系统的仿真结果表明了分数阶控制器对干扰和噪声的抑制效果。这些结果也表明,分数控制器具有更好的效果,并克服了分数PDβ和传统预测控制器的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractional order PID controller for the stabilisation of chaotic systems using Takagi-Sugeno fuzzy model
In this paper, we propose a new fractional PIαDβ controller design to control chaotic systems. The controller design is based on the predictive control proposed by Yamamoto et al. (2001) and the fractional calculus. The parameters of the controller are determined by minimising the energy of the chaotic states using particle swarm optimisation. In order to obtain a simple model structure, we have used Takagi-Sugeno technique. A fractional PDβ and conventional predictive controllers have been also used as a comparative technique, in order to show the effectiveness of the proposed design one. The simulation results on Lorenz and Chen chaotic systems show the efficiency of the proposed fractional controller to reject disturbances and noises. These results show also that the fractional controller gives better results and overcome those of the fractional PDβ and conventional predictive controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Systems, Control and Communications
International Journal of Systems, Control and Communications Engineering-Control and Systems Engineering
CiteScore
1.50
自引率
0.00%
发文量
26
期刊最新文献
A wideband G-shaped array antenna for X and Ku band applications Smart LPG usage and leakage detection using IoT and mobile application Synchronisation scheme for cluster-based interconnected network of nonlinear systems Decreasing control signal vibrations in the anti-noise model-free sliding mode control algorithm Unknown input observer design for T-S fuzzy systems with time-varying bounded delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1