{"title":"载人火星进入、下降和着陆的中升阻刚性飞行器六自由度性能:分数多项式动力下降制导方法","authors":"Breanna J. Johnson, P. Lu, R. Sostaric","doi":"10.2514/6.2020-1513","DOIUrl":null,"url":null,"abstract":"Defining a feasible vehicle design and mission architecture capable of reliably delivering a payload of 20 metric tons (mt) or more is a great challenge for landing humans on Mars. The Mid Lift-to-Drag Rigid Vehicle (MRV), a rigid decelerator studied in NASA’s Entry, Descent, and Landing Architecture Study (EDLAS), has shown to be a viable vehicle candidate for future human Mars missions. As the vehicle concept matures, models of increasing fidelity are added to the six-degree-of-freedom (6DoF) EDL simulation. This paper presents 6DoF simulation results using model updates for vehicle mass properties, fineness ratio, and aerodynamic-propulsive interactions. Additionally, an assessment of the Fractional-Polynomial Powered Descent Guidance (FP 2 DG) performance is presented, and the vehicle performance is compared with the Tunable Apollo Powered Descent Guidance (TAPDG). Finally, Monte Carlo results of the vehicle design trades are presented.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mid Lift-to-Drag Rigid Vehicle 6-DoF Performance for Human Mars Entry, Descent, and Landing: A Fractional Polynomial Powered Descent Guidance Approach\",\"authors\":\"Breanna J. Johnson, P. Lu, R. Sostaric\",\"doi\":\"10.2514/6.2020-1513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defining a feasible vehicle design and mission architecture capable of reliably delivering a payload of 20 metric tons (mt) or more is a great challenge for landing humans on Mars. The Mid Lift-to-Drag Rigid Vehicle (MRV), a rigid decelerator studied in NASA’s Entry, Descent, and Landing Architecture Study (EDLAS), has shown to be a viable vehicle candidate for future human Mars missions. As the vehicle concept matures, models of increasing fidelity are added to the six-degree-of-freedom (6DoF) EDL simulation. This paper presents 6DoF simulation results using model updates for vehicle mass properties, fineness ratio, and aerodynamic-propulsive interactions. Additionally, an assessment of the Fractional-Polynomial Powered Descent Guidance (FP 2 DG) performance is presented, and the vehicle performance is compared with the Tunable Apollo Powered Descent Guidance (TAPDG). Finally, Monte Carlo results of the vehicle design trades are presented.\",\"PeriodicalId\":93413,\"journal\":{\"name\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2020-1513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-1513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mid Lift-to-Drag Rigid Vehicle 6-DoF Performance for Human Mars Entry, Descent, and Landing: A Fractional Polynomial Powered Descent Guidance Approach
Defining a feasible vehicle design and mission architecture capable of reliably delivering a payload of 20 metric tons (mt) or more is a great challenge for landing humans on Mars. The Mid Lift-to-Drag Rigid Vehicle (MRV), a rigid decelerator studied in NASA’s Entry, Descent, and Landing Architecture Study (EDLAS), has shown to be a viable vehicle candidate for future human Mars missions. As the vehicle concept matures, models of increasing fidelity are added to the six-degree-of-freedom (6DoF) EDL simulation. This paper presents 6DoF simulation results using model updates for vehicle mass properties, fineness ratio, and aerodynamic-propulsive interactions. Additionally, an assessment of the Fractional-Polynomial Powered Descent Guidance (FP 2 DG) performance is presented, and the vehicle performance is compared with the Tunable Apollo Powered Descent Guidance (TAPDG). Finally, Monte Carlo results of the vehicle design trades are presented.